• 제목/요약/키워드: smart floor

검색결과 102건 처리시간 0.024초

Structural model updating of the Gageocho Ocean Research Station using mass reallocation method

  • Kim, Byungmo;Yi, Jin-Hak
    • Smart Structures and Systems
    • /
    • 제26권3호
    • /
    • pp.291-309
    • /
    • 2020
  • To study oceanic and meteorological problems related to climate change, Korea has been operating several ocean research stations (ORSs). In 2011, the Gageocho ORS was attacked by Typhoon Muifa, and its structural members and several observation devices were severely damaged. After this event, the Gageocho ORS was rehabilitated with 5 m height to account for 100-yr extreme wave height, and the vibration measurement system was equipped to monitor the structural vibrational characteristics including natural frequencies and modal damping ratios. In this study, a mass reallocation method is presented for structural model updating of the Gageocho ORS based on the experimentally identified natural frequencies. A preliminary finite element (FE) model was constructed based on design drawings, and several of the candidate baseline FE models were manually built, taking into account the different structural conditions such as corroded thickness. Among these candidate baseline FE models, the most reasonable baseline FE model was selected by comparing the differences between the identified and calculated natural frequencies; the most suitable baseline FE model was updated based on the identified modal properties, and by using the pattern search method, which is one of direct search optimization methods. The mass reallocation method is newly proposed as a means to determine the equivalent mass quantities along the height and in a floor. It was found that the natural frequencies calculated based on the updated FE model was very close to the identified natural frequencies. In conclusion, it is expected that these results, which were obtained by updating a baseline FE model, can be useful for establishing the reference database for jacket-type offshore structures, and assessing the structural integrity of the Gageocho ORS.

Terra-Scope - a MEMS-based vertical seismic array

  • Glaser, Steven D.;Chen, Min;Oberheim, Thomas E.
    • Smart Structures and Systems
    • /
    • 제2권2호
    • /
    • pp.115-126
    • /
    • 2006
  • The Terra-Scope system is an affordable 4-D down-hole seismic monitoring system based on independent, microprocessor-controlled sensor Pods. The Pods are nominally 50 mm in diameter, and about 120 mm long. They are expected to cost approximately $6000 each. An internal 16-bit, extremely low power MCU controls all aspects of instrumentation, eight programmable gain amplifiers, and local signal storage. Each Pod measures 3-D acceleration, tilt, azimuth, temperature, and other parametric variables such as pore water pressure and pH. Each Pod communicates over a standard digital bus (RS-485) through a completely web-based GUI interface, and has a power consumption of less than 400 mW. Three-dimensional acceleration is measured by pure digital force-balance MEMS-based accelerometers. These accelerometers have a dynamic range of more than 115 dB and a frequency response from DC to 1000 Hz with a noise floor of less than $30ng_{rms}/{\surd}Hz$. Accelerations above 0.2 g are measured by a second set of MEMS-based accelerometers, giving a full 160 dB dynamic range. This paper describes the system design and the cooperative shared-time scheduler implemented for this project. Restraints accounted for include multiple data streams, integration of multiple free agents, interaction with the asynchronous world, and hardened time stamping of accelerometer data. The prototype of the device is currently undergoing evaluation. The first array will be installed in the spring of 2006.

Wireless sensor networks for permanent health monitoring of historic buildings

  • Zonta, Daniele;Wu, Huayong;Pozzi, Matteo;Zanon, Paolo;Ceriotti, Matteo;Mottola, Luca;Picco, Gian Pietro;Murphy, Amy L.;Guna, Stefan;Corra, Michele
    • Smart Structures and Systems
    • /
    • 제6권5_6호
    • /
    • pp.595-618
    • /
    • 2010
  • This paper describes the application of a wireless sensor network to a 31 meter-tall medieval tower located in the city of Trento, Italy. The effort is motivated by preservation of the integrity of a set of frescoes decorating the room on the second floor, representing one of most important International Gothic artworks in Europe. The specific application demanded development of customized hardware and software. The wireless module selected as the core platform allows reliable wireless communication at low cost with a long service life. Sensors include accelerometers, deformation gauges, and thermometers. A multi-hop data collection protocol was applied in the software to improve the system's flexibility and scalability. The system has been operating since September 2008, and in recent months the data loss ratio was estimated as less than 0.01%. The data acquired so far are in agreement with the prediction resulting a priori from the 3-dimensional FEM. Based on these data a Bayesian updating procedure is employed to real-time estimate the probability of abnormal condition states. This first period of operation demonstrated the stability and reliability of the system, and its ability to recognize any possible occurrence of abnormal conditions that could jeopardize the integrity of the frescos.

개선된 IoT기반 제연시스템의 숙박시설 적용에 관한 연구 (A study on the application of improved IoT- based smoke control system to lodging facilities fires)

  • 김수용;이상수;이성화;김진태
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권5호
    • /
    • pp.113-118
    • /
    • 2021
  • 본 연구는 국내 소규모 숙박시설에서 화재발생으로 인해 생성되는 연기로부터 재실자에게 안전성을 제공하기 위한 연구로서, 재실자가 화재발생을 인지하지 못 하더라도 일정시간이상 피난안전성을 제공하는 방안에 대한 것이다. 본 연구의 목표는 소규모 숙박시설(바닥면적 1,000m2 이하)에서 발생하는 심야시간대 화재에서 재실자가 화재발생을 인지하지 못하더라도 ASET을 1시간 이상 제공이 가능한 시스템을 설계하는 것이다. 숙박시설에 적용 가능한 제연시스템의 기본구성을 설계하였으며, 해당 시스템이 적용된 숙박시설에서의 피난 시나리오를 통해서 국내 소규모 숙박시설에 적용시 기대효과를 제시하였다.

Relationship Between the Closed Kinetic Chain Upper Extremity Stability Test and Strength of Serratus Anterior and Triceps Brachii Muscles

  • Weon, Young-soo;Ahn, Sun-hee;Kim, Jun-hee;Gwak, Gyeong-tae;Kwon, Oh-yun
    • 한국전문물리치료학회지
    • /
    • 제28권3호
    • /
    • pp.208-214
    • /
    • 2021
  • Background: The CKCUES test evaluates the functional performance of the shoulder joint. The CKCUES test scores CKC exercises of the upper limbs to examine shoulder stability. Although the CKCUES test provides quantitative data on functional ability and performance, no study has determined the relationship between CKCUES scores and SA and TB muscle strength. Objects: The objective of this study is to determine the relationship between the CKCUES test scores and the strength of the SA and TB muscles in the CKCUES and unilateral CKCUES tests. Methods: Sixty-six healthy male volunteers participated in the study. A Smart KEMA strength sensor measured SA and TB muscle strength. Two parallel lines on the floor indicated the initial hand placement to start CKCUES tests. For 15 seconds, the subject raises one hand and reaches over to touch the supporting hand, then returns to the starting position. Results: The correlation between the CKCUES test scores and the strength of the SA was strong (r = 0.650, p < 0.001), and the TB was moderate (r = 0.438, p < 0.001). The correlation between the unilateral CKCUES test and the strength of the SA of the supporting side was strong (r = 0.605, p < 0.001), and swing side was strong (r = 0.681, p < 0.001). The correlation between the unilateral CKCUES test and the strength of the TB of the supporting side was moderate (r = 0.409, p < 0.001), and swing side was moderate (r = 0.482, p < 0.001). Conclusion: Our study showed that the CKCUES test had a strong association with isometric strength of SA and moderate association with that of TB. These findings suggest that the CKCUES test can evaluate the function of the SA. Moreover, the unilateral CKCUES test can evaluate unilateral shoulder function.

Dynamic characteristics of single door electrical cabinet under rocking: Source reconciliation of experimental and numerical findings

  • Jeon, Bub-Gyu;Son, Ho-Young;Eem, Seung-Hyun;Choi, In-Kil;Ju, Bu-Seog
    • Nuclear Engineering and Technology
    • /
    • 제53권7호
    • /
    • pp.2387-2395
    • /
    • 2021
  • Seismic qualifications of electrical equipment, such as cabinet systems, have been emerging as the key area of nuclear power plants in Korea since the 2016 Gyeongju earthquake, including the high-frequency domain. In addition, electrical equipment was sensitive to the high-frequency ground motions during the past earthquake. Therefore, this paper presents the rocking behavior of the electrical cabinet system subjected to Reg. 1.60 and UHS. The high fidelity finite element (FE) model of the cabinet related to the shaking table test data was developed. In particular, the first two global modes of the cabinet from the experimental test were 16 Hz and 24 Hz, respectively. In addition, 30.05 Hz and 37.5 Hz were determined to be the first two local modes in the cabinet. The high fidelity FE model of the cabinet using the ABAQUS platform was extremely reconciled with shaking table tests. As a result, the dynamic properties of the cabinet were sensitive to electrical instruments, such as relays and switchboards, during the shaking table test. In addition, the amplification with respect to the vibration transfer function of the cabinet was observed on the third floor in the cabinet due to localized impact corresponding to the rocking phenomenon of the cabinet under Reg.1.60 and UHS. Overall, the rocking of the cabinet system can be caused by the low-frequency oscillations and higher peak horizontal acceleration.

Parametric study of a new tuned mass damper with pre-strained SMA helical springs for vibration reduction

  • Hongwang Lv;Bin Huang
    • Smart Structures and Systems
    • /
    • 제31권1호
    • /
    • pp.89-100
    • /
    • 2023
  • This paper conducts a parametric study of a new tuned mass damper with pre-strained superelastic SMA helical springs (SMAS-TMD) on the vibration reduction effect. First, a force-displacement relation model of superelastic SMA helical spring is presented based on the multilinear constitutive model of SMA material, and the tension tests of the six SMA springs fabricated are implemented to validate the mechanical model. Then, a dynamic model of a single floor steel frame with the SMAS-TMD damper is set up to simulate the seismic responses of the frame, which are testified by the shaking table tests. The wire diameter, initial coil diameter, number of coils and pre-strain length of SMA springs are extracted to investigate their influences on the seismic response reduction of the frame. The numerical and experimental results show that, under different earthquakes, when the wire diameter, initial coil diameter and number of coils are set to the appropriate values so that the initial elastic stiffness of the SMA spring is between 0.37 and 0.58 times of classic TMD stiffness, the maximum reduction ratios of the proposed damper can reach 40% as the mass ratio is 2.34%. Meanwhile, when the pre-strain length of SMA spring is in a suitable range, the SMAS-TMD damper can also achieve very good vibration reduction performance. The vibration reduction performance of the SMAS-TMD damper is generally equal to or better than that of the classic optimal TMD, and the proposed damper effectively suppresses the detuning phenomena that often occurs in the classic TMD.

Structural damage identification with output-only measurements using modified Jaya algorithm and Tikhonov regularization method

  • Guangcai Zhang;Chunfeng Wan;Liyu Xie;Songtao Xue
    • Smart Structures and Systems
    • /
    • 제31권3호
    • /
    • pp.229-245
    • /
    • 2023
  • The absence of excitation measurements may pose a big challenge in the application of structural damage identification owing to the fact that substantial effort is needed to reconstruct or identify unknown input force. To address this issue, in this paper, an iterative strategy, a synergy of Tikhonov regularization method for force identification and modified Jaya algorithm (M-Jaya) for stiffness parameter identification, is developed for damage identification with partial output-only responses. On the one hand, the probabilistic clustering learning technique and nonlinear updating equation are introduced to improve the performance of standard Jaya algorithm. On the other hand, to deal with the difficulty of selection the appropriate regularization parameters in traditional Tikhonov regularization, an improved L-curve method based on B-spline interpolation function is presented. The applicability and effectiveness of the iterative strategy for simultaneous identification of structural damages and unknown input excitation is validated by numerical simulation on a 21-bar truss structure subjected to ambient excitation under noise free and contaminated measurements cases, as well as a series of experimental tests on a five-floor steel frame structure excited by sinusoidal force. The results from these numerical and experimental studies demonstrate that the proposed identification strategy can accurately and effectively identify damage locations and extents without the requirement of force measurements. The proposed M-Jaya algorithm provides more satisfactory performance than genetic algorithm, Gaussian bare-bones artificial bee colony and Jaya algorithm.

Modeling and experimental verification of phase-control active tuned mass dampers applied to MDOF structures

  • Yong-An Lai;Pei-Tzu Chang;Yan-Liang Kuo
    • Smart Structures and Systems
    • /
    • 제32권5호
    • /
    • pp.281-295
    • /
    • 2023
  • The purpose of this study is to demonstrate and verify the application of phase-control absolute-acceleration-feedback active tuned mass dampers (PCA-ATMD) to multiple-degree-of-freedom (MDOF) building structures. In addition, servo speed control technique has been developed as a replacement for force control in order to mitigate the negative effects caused by friction and inertia. The essence of the proposed PCA-ATMD is to achieve a 90° phase lag for a structure by implementing the desired control force so that the PCA-ATMD can receive the maximum power flow with which to effectively mitigate the structural vibration. An MDOF building structure with a PCA-ATMD and a real-time filter forming a complete system is modeled using a state-space representation and is presented in detail. The feedback measurement for the phase control algorithm of the MDOF structure is compact, with only the absolute acceleration of one structural floor and ATMD's velocity relative to the structure required. A discrete-time direct output-feedback optimization method is introduced to the PCA-ATMD to ensure that the control system is optimized and stable. Numerical simulation and shaking table experiments are conducted on a three-story steel shear building structure to verify the performance of the PCA-ATMD. The results indicate that the absolute acceleration of the structure is well suppressed whether considering peak or root-mean-square responses. The experiment also demonstrates that the control of the PCA-ATMD can be decentralized, so that it is convenient to apply and maintain to real high-rise building structures.

도시철도 역사 스크린 도어 개폐에 따른 냉방 기류 해석 및 효율 비교 분석 (Analysis of Cooling Air Current and Efficiency of Air Conditioning in the Underground Subway Station with Screen-Door Opening and Closing)

  • 장용준;류지민;정호성
    • 한국철도학회논문집
    • /
    • 제17권5호
    • /
    • pp.328-335
    • /
    • 2014
  • 도시철도 지하역사 냉방 기류 및 냉방 효율을 조사하기 위하여 수치해법을 이용하여 해석하고 현장 실험 결과와 비교하여 분석하였다. 해석 대상 역사로는 지하 8층의 깊이 43.6m인 서울 5호선 신금호 역사를 선정하였다. 전체 역사를 해석 영역으로 하였으며, 공조기 모드는 평상시 모드로 고정시켰다. 냉방 공조를 위하여 대합실 천정에 총 94개의 정사각형($0.6m{\times}0.6m$) 환기구를 모델하였으며, 승강장은 총 222개의 환기구가 승강장 천정에 모델되었다. 대합실에서 급기되는 공기는 $47,316m^3/h$, 배기되는 공기량은 $33,980m^3/h$이며, 승강장에서 급기되는 공기는 $33,968m^3/h$, 배기되는 공기량은 $76,190m^3/h$로 현장의 풍량을 반영하였다. 승강장에서 스크린도어(PSD)는 닫힌 경우와 열린 경우 각각을 조사하였다. 총 750만개의 격자가 사용되었으며, 전체 영역을 22개의 다중 블록으로 나누어서 계산하고, MPI를 이용하여 각각의 블록에서 계산된 결과를 교환하였다. LES 기법을 이용하여 운동량 방정식 및 에너지 방정식을 계산하였다.