DOI QR코드

DOI QR Code

Terra-Scope - a MEMS-based vertical seismic array

  • Glaser, Steven D. (Center for Information Technology Research in the Interest of Society, University of California) ;
  • Chen, Min (Center for Information Technology Research in the Interest of Society, University of California) ;
  • Oberheim, Thomas E. (Center for Information Technology Research in the Interest of Society, University of California)
  • Received : 2005.02.19
  • Accepted : 2005.11.29
  • Published : 2006.04.25

Abstract

The Terra-Scope system is an affordable 4-D down-hole seismic monitoring system based on independent, microprocessor-controlled sensor Pods. The Pods are nominally 50 mm in diameter, and about 120 mm long. They are expected to cost approximately $6000 each. An internal 16-bit, extremely low power MCU controls all aspects of instrumentation, eight programmable gain amplifiers, and local signal storage. Each Pod measures 3-D acceleration, tilt, azimuth, temperature, and other parametric variables such as pore water pressure and pH. Each Pod communicates over a standard digital bus (RS-485) through a completely web-based GUI interface, and has a power consumption of less than 400 mW. Three-dimensional acceleration is measured by pure digital force-balance MEMS-based accelerometers. These accelerometers have a dynamic range of more than 115 dB and a frequency response from DC to 1000 Hz with a noise floor of less than $30ng_{rms}/{\surd}Hz$. Accelerations above 0.2 g are measured by a second set of MEMS-based accelerometers, giving a full 160 dB dynamic range. This paper describes the system design and the cooperative shared-time scheduler implemented for this project. Restraints accounted for include multiple data streams, integration of multiple free agents, interaction with the asynchronous world, and hardened time stamping of accelerometer data. The prototype of the device is currently undergoing evaluation. The first array will be installed in the spring of 2006.

Keywords

References

  1. Abrahamson, N. A., Schneider, J. F. and Stepp, J. C. (1991), 'Empirical spatial coherency functions for application to soil structure interaction analyses', Earthq. Spectra, 7(1), 1, 27 https://doi.org/10.1193/1.1585648
  2. Anderson, D. G. and Tang, Y. K. (1989), 'Summary of soil characterization program for the Lotung large-scale seismic experiment', Proc.: EPRI/NRC/TPC workshop on seismic soil-structure interaction analysis techniques using data from Lotung, Taiwan, Report NP-6154
  3. Applied MEMS, (2002), Si-Flex Force-Balance Servo Accelerometers, Model SF1500-UNLD
  4. Archuleta, R. J., Seale, S. H., Sangas, P. V., Baker, L. M. and Swain, S. T. (1992), 'Gamer valley downhole array of accelerometers: instrumentation and preliminary data analysis', Bulletin of the Seismological Society of America, 82:4, 1592-1621
  5. Beck, J. L. (1978), 'Determining models of structures from earthquake records', Earthquake Engineering Research Laboratory, Report 78-01. Pasadena, California
  6. Bennett, M. J., McLaughlin, P. V; Sarmiento, J. S. and Youd, T. L. (1984), 'Geotechnical investigation of liquefaction sites, Imperial Valley', California, Open File Report 84-252. p. 103. Menlo Park, CA: United States Geological Survey
  7. Baise, L. R., Glaser, S. D. and Dreger, D. (2003), 'Site response at treasure and Yerba Buena island, San Francisco bay, california', J. Geotech. Eng., ASCE 129(6), 415-426 https://doi.org/10.1061/(ASCE)1090-0241(2003)129:6(415)
  8. Baise, L. G. and Glaser, S. D. (2000), 'Repeatability of site response estimates made using system identification', Bulletin of the Seismological Society of America, 90:4
  9. de Alba, P. and Faris, J. R. (1998), 'Treasure island, California, deep instrumentation array', Proceedings, Second International Symposium on the Effects of Surface Geology on Seismic Motion, 1, 201-208
  10. Eigamal, A.-W., Zeghal, M., Parra, E., Gunturi, R., Tang, H. T. and Stepp, J. C. (1996). 'Identification and modeling of earthquake ground response-I, site amplification', Soil Dyn. Earthq. Eng, 15, 499-522 https://doi.org/10.1016/S0267-7261(96)00021-8
  11. Ellis, G. W. and Cakmak, A. S. (1991), Effect of Spatial Variability on ARMA Modeling of Ground Motion. Structural Safety, 10(N1-3), 181-191 https://doi.org/10.1016/0167-4730(91)90003-R
  12. Glaser, S. D. (1996), 'Insight into liquefaction by system identification', Geotechnique, 46(4), 641-655 https://doi.org/10.1680/geot.1996.46.4.641
  13. Gunturi, V. R. Elgamal, A.-W. and Tang, H.-T. (1998), 'Hualien seismic downhole data analysis', Eng. Geology, 50, 9-29 https://doi.org/10.1016/S0013-7952(97)00084-7
  14. Katayama, T., Yamazaki, F., Nagata, S. and Lu, L. (1990), 'Development of strong motion database for the Chiba seismometer array', Earthquake Disaster Mitigation Engineering, Inst. of Ind.. Science, Univ. of Tokyo. Report No. 90-1 (14)
  15. Laplante, P. A. (2004), Real-Time System Design and Analysis, NYC: John Wiley & Sons
  16. Lee, E. A. and Varaiya, P. (2003), Structure and Interpretation of Signals and Systems, Boston: Addison Wesley
  17. Liu, C. J. and Layland, J. W. (1973), 'Scheduling algorithms for multiprogramming in a hard-real-time environment', J. Association for Computing Machinery; 20(1)
  18. Ljung, L. J. (1987), System Identification: Theory for the User. Englewood Cliffs, NJ: Prentice-Hall
  19. Pont, M. (2001), Patterns for Time-Triggered Embedded Systems, NYC: Addison-Wesley
  20. Silberschatz, A., Galvin, P. B. and Gagne, G. (2004), Operating System Concepts with Java, NYC: John Wiley & Sons
  21. Steidl, J. and Nigbor, R. (2000), SCEC/ROSRINE Workshop on Borehole Array Data Utilization, Palm Springs, CA, 16 Dec
  22. Steidl, J., Tumarkin, A. G. and Archuleta, R. (1996), 'What is a reference site?', Bull. Seism. Soc. America, 86, 1733-1748
  23. Stidham, C. M. Antolik, A., Dreger, D., Larsen, S. and Romanowicz, B. (1999), 'Three-dimensional structure influences on the strong-motion wavefield of the Lorna Prieta earthquake', Bull. Seism. Soc. America, 89:5, 1184-1202
  24. Tang, H. T., Tang, Y. K., Stepp, J. C., Wall, I. B., Lin, E., Cheng, S. C., Lee, S. K. and Hsiau, H. M. (1989), 'EPRI/TPC large-scale seismic experiment at Lotung, Taiwan', Proceedings: EPRI/ NRC/TPC Workshop on Seismic Soil-Structure Interaction Analysis Techniques Using Data from Lotung, Taiwan, Report NP-6I54, Palo Alto: EPRI
  25. Zeghal, M. and Elgamal, A.-W., (1993), 'Lotung site: downhole seismic data analysis', Report. Palo Alto: Electric Power Research Institute

Cited by

  1. Geotechnical sensing using electromagnetic attenuation between radio transceivers vol.21, pp.12, 2012, https://doi.org/10.1088/0964-1726/21/12/125017
  2. CENet: A Cabinet Environmental Sensing Network vol.10, pp.12, 2010, https://doi.org/10.3390/s100201021
  3. Subsurface Event Detection and Classification Using Wireless Signal Networks vol.12, pp.12, 2012, https://doi.org/10.3390/s121114862
  4. Initial development of wireless acoustic emission sensor Motes for civil infrastructure state monitoring vol.6, pp.3, 2010, https://doi.org/10.12989/sss.2010.6.3.197