• Title/Summary/Keyword: smart control and analysis

Search Result 711, Processing Time 0.03 seconds

Cable with discrete negative stiffness device and viscous damper: passive realization and general characteristics

  • Chen, Lin;Sun, Limin;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.627-643
    • /
    • 2015
  • Negative stiffness, previously emulated by active or semi-active control for cable vibration mitigation, is realized passively using a self-contained highly compressed spring, the negative stiffness device (NSD).The NSD installed in parallel with a viscous damper (VD) in the vicinity of cable anchorage, enables increment of damper deformation during cable vibrations and hence increases the attainable cable damping. Considering the small cable displacement at the damper location, even with the weakening device, the force provided by the NSD-VD assembly is approximately linear. Complex frequency analysis has thus been conducted to evaluate the damping effect of the assembly on the cable; the displacement-dependent negative stiffness is further accounted by numerical analysis, validating the accuracy of the linear approximation for practical ranges of cable and NSD configurations. The NSD is confirmed to be a practical and cost-effective solution to improve the modal damping of a cable provided by an external damper, especially for super-long cables where the damper location is particularly limited. Moreover, mathematically, a linear negative stiffness and viscous damping assembly has proven capability to represent active or semi-active control for simplified cable vibration analysis as reported in the literature, while in these studies only the assembly located near cable anchorage has been addressed. It is of considerable interest to understand the general characteristics of a cable with the assembly relieving the location restriction, since it is quite practical to have an active controller installed at arbitrary location along the cable span such as by hanging an active tuned mass damper. In this paper the cable frequency variations and damping evolutions with respect to the arbitrary assembly location are then evaluated and compared to those of a taut cable with a viscous damper at arbitrary location, and novel frequency shifts are observed. The characterized complex frequencies presented in this paper can be used for preliminary damping effect evaluation of an adaptive passive or semi-active or active device for cable vibration control.

Effects of Preconceptional Ethanol Consumption on ADHD-Like Symptoms in Sprague-Dawley Rat Offsprings

  • Choi, In-Ah;Kim, Pitna;Joo, So-Hyun;Kim, Min-Kyeong;Park, Jin-Hee;Kim, Hee-Jin;Ryu, Jong-Hoon;Cheong, Jae-Hoon;Shin, Chan-Young
    • Biomolecules & Therapeutics
    • /
    • v.20 no.2
    • /
    • pp.226-233
    • /
    • 2012
  • Ethanol exposure during gestational period is related to growth retardation, morphological abnormality, and even in neurological abnormalities including attention deficit/hyperactivity disorder (ADHD)-like behaviors on offspring. However, relatively little is known about the effects of maternal ethanol consumption prior to conception on their offspring. In this study, we investigated whether maternal ethanol administration during preconceptional phase produces ADHD-like behaviors in the rat offspring. Sprague-Dawley (SD) female rats were administrated ethanol via intragastric intubation with dosing regimen of 6 g/kg daily for 10 consecutive days and treated female rats then mated with non-treated male SD rats after 8 weeks. Another group subjected to the same procedure as those conducted on ethanol treated group except the saline administration instead of ethanol. Offspring was tested for their ADHD-like behaviors using open field test, Y maze test and impulsivity test that is performed in the aversive electronic foot shock paradigm. Offspring of preconceptional ethanol treated (EtOH) group showed hyperlocomotive activity, attention deficit and impulsivity. And reduction of striatal dopamine transporter (DAT) level was observed by Western blot in the EtOH group, compared to control (Con) group, while the immunohistochemical analysis exhibited increased expression of norepinephrine transporter (NET) in the frontal cortex. These results suggest that maternal ethanol consumption in the preconceptional phase induces ADHD-like behaviors in offspring that might be related to the abnormal expression of DAT and NET in rat.

An Optimal Model Prediction for Fruits Diseases with Weather Conditions

  • Ragu, Vasanth;Lee, Myeongbae;Sivamani, Saraswathi;Cho, Yongyun;Park, Jangwoo;Cho, Kyungryong;Cho, Sungeon;Hong, Kijeong;Oh, Soo Lyul;Shin, Changsun
    • Smart Media Journal
    • /
    • v.8 no.1
    • /
    • pp.82-91
    • /
    • 2019
  • This study provides the analysis and prediction of fruits diseases related to weather conditions (temperature, wind speed, solar power, rainfall and humidity) using Linear Model and Poisson Regression. The main goal of the research is to control the method of fruits diseases and also to prevent diseases using less agricultural pesticides. So, it is needed to predict the fruits diseases with weather data. Initially, fruit data is used to detect the fruit diseases. If diseases are found, we move to the next process and verify the condition of the fruits including their size. We identify the growth of fruit and evidence of diseases with Linear Model. Then, Poisson Regression used in this study to fit the model of fruits diseases with weather conditions as an input provides the predicted diseases as an output. Finally, the residuals plot, Q-Q plot and other plots help to validate the fitness of Linear Model and provide correlation between the actual and the predicted diseases as a result of the conducted experiment in this study.

Analysis of Step-Down Converter with Low Ripple for Smart IoT Devices (스마트 사물인터넷 기기용 저리플 방식의 스텝다운 컨버터 분석)

  • Kim, Da-Sol;Al-Shidaifat, AlaaDdin;Gu, Jin-Seon;Kumar, Sandeep;Song, Han-Jung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.5
    • /
    • pp.641-644
    • /
    • 2021
  • Wearable devices and IoT are being utilized in various fields, where all systems are developing in the direction of multi-functionality, low power consumption, and high speed. In this paper, we propose a DC -DC Step-down C onverter for IoT smart devices. The proposed DC -DC Step-down converter is composed of a control block of the power supply stage. It also consists of an overheat protection circuit, under-voltage protection circuit, an overvoltage protection circuit, a soft start circuit, a reference voltage circuit, a lamp generator, an error amplifier, and a hysteresis comparator. The proposed DC-DC converter was designed and fabricated using a Magnachip / Hynix 180nm CMOS process, 1-poly 6-metal, the measured results showed a good match with the simulation results.

Study on Particulate Pollutant Reduction Characteristics of Vegetation Biofilters in Underground Subway Stations (지하역사내 식생바이오필터의 입자상 오염물질 저감특성 연구)

  • Kim, Tae Han;Oh, Ji Eun;Kim, Mi Ju
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.99-105
    • /
    • 2022
  • Public attention to the indoor environment of underground subway stations, which is a representative multi-use facility, has been increasing along with the increase in indoor activities. In underground stations, fine iron oxide, which affects the health of users, is generated because of the friction between wheels and rails. Among particulate pollutant reduction technologies, plants have been considered as a non-chemical air purification method, and their effects in reducing certain chemical species have been identified in previous studies. The present study aimed to derive the total quantitative and qualitative reduction effects of a bio-filter system comprising air purifying plants, installed in an underground subway station. The experiment proceeded in two ways. First, PM(particulate matter) reduction effect by vegetation biofilter was monitored with the IAQ(indoor air quality) station. In addition, chemical speciation analysis conducted on the samples collected from the experimental and control areas where plants and irrigation using SEM-EDS(scanning electron microscopy-energy dispersive X-ray spectroscopy). This study confirmed the effect of the vegetation bio-filter system in reducing the accumulation of particulate pollutants and transition and other metals that are harmful to the human body.

A Study on Power Flow Calculation Algorithm for DC System Analysis (직류시스템 해석을 위한 조류계산 알고리즘에 관한 연구)

  • Han, Jung-Hoon;Kim, Hong-Joo;Cho, Jin-Tae;Cho, Yoon-Sung
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.738-741
    • /
    • 2018
  • As DC power and DC load increase, unnecessary conversion process occurs in existing system. Due to these problems, interest in DC distribution systems has increased recently. As the importance of DC distribution system becomes higher, it is necessary to analyze the DC current. In this paper, we briefly describe the control method of the converter and describe the DC power flow calculation method. finally, we compared the simulation results of MATLAB and ETAP.

On complex flutter and buckling analysis of a beam structure subjected to static follower force

  • Wang, Q.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.5
    • /
    • pp.533-556
    • /
    • 2003
  • The flutter and buckling analysis of a beam structure subjected to a static follower force is completely studied in the paper. The beam is fixed in the transverse direction and constrained by a rotational spring at one end, and by a translational spring and a rotational spring at the other end. The co-existence of flutter and buckling in this beam due to the presence of the follower force is an interesting and important phenomenon. The results from this theoretical analysis will be useful for the stability design of structures in engineering applications, such as the potential of flutter control of aircrafts by smart materials. The transition-curve surface for differentiating the two distinct instability regions of the beam is first obtained with respect to the variations of the stiffness of the springs at the two ends. Second, the capacity of the follower force is derived for flutter and buckling of the beam as a function of the stiffness of the springs by observing the variation of the first two frequencies obtained from dynamic analysis of the beam. The research in the paper may be used as a benchmark for the flutter and buckling analysis of beams.

Dynamic analysis of magnetorheological elastomer sandwich MEMS sensor under magnetic field

  • Akhavan, Hossein;Ehyaei, Javad;Ghadiri, Majid
    • Smart Structures and Systems
    • /
    • v.29 no.5
    • /
    • pp.705-714
    • /
    • 2022
  • In this paper, the effect of magnetic field on the vibration behavior of a Magnetorheological elastomer (MRE) sandwich MEMS actuated by electrostatic actuation with conductive skins are examined within the multiple scales (MMS) perturbation method. Magnetorheological smart materials have been widely used in vibration control of various systems due to their mechanical properties change under the influence of different magnetic fields. To investigate the vibrational behavior of the movable electrode, the Euler-Bernoulli beam theory, as well as Hamilton's principle is used to derive the equations and the related boundary conditions governing the dynamic behavior of the system are applied. The results of this study show that by placing the Magnetorheological elastomer core in the movable electrode and applying different magnetic fields on it, its natural vibrational frequency can be affected so that by increasing the applied magnetic field, the system's natural frequency increases. Also, the effect of various factors such as the electric potential difference between two electrodes, changes in the thickness of the core and the skins, electrode length, the distance between two electrodes and also change in vibration modes of the system on natural frequencies have been investigated.

Application Consideration of Machine Learning Techniques in Satellite Systems

  • Jin-keun Hong
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.48-60
    • /
    • 2024
  • With the exponential growth of satellite data utilization, machine learning has become pivotal in enhancing innovation and cybersecurity in satellite systems. This paper investigates the role of machine learning techniques in identifying and mitigating vulnerabilities and code smells within satellite software. We explore satellite system architecture and survey applications like vulnerability analysis, source code refactoring, and security flaw detection, emphasizing feature extraction methodologies such as Abstract Syntax Trees (AST) and Control Flow Graphs (CFG). We present practical examples of feature extraction and training models using machine learning techniques like Random Forests, Support Vector Machines, and Gradient Boosting. Additionally, we review open-access satellite datasets and address prevalent code smells through systematic refactoring solutions. By integrating continuous code review and refactoring into satellite software development, this research aims to improve maintainability, scalability, and cybersecurity, providing novel insights for the advancement of satellite software development and security. The value of this paper lies in its focus on addressing the identification of vulnerabilities and resolution of code smells in satellite software. In terms of the authors' contributions, we detail methods for applying machine learning to identify potential vulnerabilities and code smells in satellite software. Furthermore, the study presents techniques for feature extraction and model training, utilizing Abstract Syntax Trees (AST) and Control Flow Graphs (CFG) to extract relevant features for machine learning training. Regarding the results, we discuss the analysis of vulnerabilities, the identification of code smells, maintenance, and security enhancement through practical examples. This underscores the significant improvement in the maintainability and scalability of satellite software through continuous code review and refactoring.

Analysis on Importance of Information Security Factors for Smart Work using AHP -Based on the Mobile Office for Small Businesses- (AHP를 활용한 스마트워크 정보보호 요소의 중요도 분석 -중소기업의 모바일 오피스를 중심으로-)

  • Kang, Kyung-Hoon;Lim, Chae-Hong;Lim, Jong-In;Park, Tae-Hyoung
    • Journal of Digital Convergence
    • /
    • v.11 no.3
    • /
    • pp.415-426
    • /
    • 2013
  • Smart work has recently introduced as a way to solve problems such as greenhouse gas emissions, low birth rate and aging as well as to improve productivity. Because of development of ICT infrastructure and the proliferation of smart devices, the mobile office has the most commonly used within types of smart work in Korea. But the adoption of the mobile office in small businesses is only half of that of large corporations. The security issue appears to be one of the biggest obstacles to the introduction of smart work in small businesses. Therefore, the purpose of this study is to analyze the information security factors that should be considered when the mobile office is introduced to small businesses. By analyzing the previous studies, the information security factors of the mobile office are classified 5 groups composed of 24 factors. 5 groups are terminals, applications and platforms, networks, servers and users. According to the survey result using AHP, 'User' was drawn to the most important group, and 'Data Encryption', 'Wireless LAN Control' and 'Terminal Recovery When Leaving' were drawn to the important information security factors of the mobile office among 24 factors.