• Title/Summary/Keyword: smart blade

Search Result 43, Processing Time 0.03 seconds

A Study on the Individuation Process of the Protagonist in the Webtoon <Return of the Blossoming Blade> (웹툰 <화산귀환> 주인공 개성화 과정 연구)

  • Soyeong, LIm
    • Smart Media Journal
    • /
    • v.12 no.9
    • /
    • pp.152-158
    • /
    • 2023
  • This study analyzed the consciousness, unconsciousness, and individuation process of 'Cheongmyeong', the protagonist presented in the webtoon "Return of the Blossoming Blade", based on Jung's theory of individuation. The subject of the research was the webtoon "Return of the Blossoming Blade", which has formed a readership across various genders and age groups, based on a successful web novel. The individuation process of the protagonist of "Return of the Blossoming Blade", analyzed using Jung's theory, is as follows: Firstly, the protagonist's ego originated from the shadow derived from the unconscious. Secondly, the protagonist's persona is social and positive in reality, but the personal persona manifested as an unrevealed shadow. Thirdly, the protagonist's anima/animus connects the profound inner consciousness with reality, maintaining a complementary relationship with the persona. Fourthly, the protagonist's Self symbolizes the collective ideal human and the essence of the volcano. The protagonist was shown to achieve individuation through a continuous repetitive process of integrating consciousness and unconsciousness, and through the compensatory process.

Active load control for wind turbine blades using trailing edge flap

  • Lee, Jong-Won;Kim, Joong-Kwan;Han, Jae-Hung;Shin, Hyung-Kee
    • Wind and Structures
    • /
    • v.16 no.3
    • /
    • pp.263-278
    • /
    • 2013
  • The fatigue load of a turbine blade has become more important because the size of commercial wind turbines has increased dramatically in the past 30 years. The reduction of the fatigue load can result in an increase in operational efficiency. This paper numerically investigates the load reduction of large wind turbine blades using active aerodynamic load control devices, namely trailing edge flaps. The PD and LQG controllers are used to determine the trailing edge flap angle; the difference between the root bending moment and its mean value during turbulent wind conditions is used as the error signal of the controllers. By numerically analyzing the effect of the trailing edge flaps on the wind turbines, a reduction of 30-50% in the standard deviation of the root bending moment was achieved. This result implies a reduction in the fatigue damage on the wind turbines, which allows the turbine blade lengths to be increased without exceeding the designed fatigue damage limit.

Local damage detection of a fan blade under ambient excitation by three-dimensional digital image correlation

  • Hu, Yujia;Sun, Xi;Zhu, Weidong;Li, Haolin
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.597-606
    • /
    • 2019
  • Damage detection based on dynamic characteristics of a structure is one of important roles in structural damage identification. It is difficult to detect local structural damage using traditional dynamic experimental methods due to a limited number of sensors used in an experiment. In this work, a non-contact test stand of fan blades is established, and a full-field noncontact test method, combined with three-dimensional digital image correlation, Bayesian operational modal analysis, and damage indices, is used to detect local damage of a fan blade under ambient excitation without use of baseline information before structural damage. The methodology is applied to detect invisible local damage on the fan blade. Such a method has a seemingly high potential as an alternative to detect local damage of blades with complex high-precision surfaces under extreme working conditions because it is a noncontact test method and can be used under ambient excitation without human participation.

Disturbance Observer and Time-Delay Controller Design for Individual Blade Pitch Control System Driven by Electro-Mechanical Actuator (전기-기계식 구동기 기반 개별 블레이드 피치 조종 시스템의 제어를 위한 외란 관측기와 시간 지연제어기 설계)

  • Jaewan Choi;Minyu Kim;Younghoon Choi
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.1
    • /
    • pp.29-36
    • /
    • 2024
  • Recently, the concept of Urban Air Mobility (UAM) has expanded to Advanced Air Mobility (AAM). A tilt rotor type of vertical take-off and landing aircraft has been actively studied and developed. A tilt-rotor aircraft can perform a transition flight between vertical and horizontal flights. A blade pitch angle control system can be used for flight stability during transition flight time. In addition, Individual Blade Control (IBC) can reduce noise and vibration generated in transition flight. This paper proposed Disturbance Observer Based Control (DOBC) and Time Delay Control (TDC) for individual blade control of an Electro-Mechanical Actuator (EMA) based blade pitch angle control system. To compare and analyze proposed controllers, numerical simulations were conducted with DOBC and TDC.

A Study on the Introduction and Application of Core Technologies of Smart Motor-Graders for Automated Road Construction (도로 시공 자동화를 위한 스마트 모터 그레이더의 구성 기술 소개 및 적용에 관한 연구)

  • Park, Hyune-Jun;Lee, Sang-Min;Song, Chang-Heon;Cho, Jung-Woo;Oh, Joo-Young
    • Tunnel and Underground Space
    • /
    • v.32 no.5
    • /
    • pp.298-311
    • /
    • 2022
  • Some problems, such as aging workers, a decreased population due to a low birth rate, and shortage of skilled workers, are rising in construction sites. Therefore research for smart construction technology that can be improved for productivity, safety, and quality has been recently developed with government support by replacing traditional construction technology with advanced digital technology. In particular, the motor grader that mainly performs road surface flattening is a construction machine that requires the application of automation technology for repetitive construction. It is predicted that the construction period will be shortened if the construction automation technology such as trajectory tracking, automation work, and remote control technology is applied. In this study, we introduce the hardware and software architecture of the smart motor grader to apply unmanned and automation technology and then analyze the traditional earthwork method of the motor grader. We suggested the application plans for the path pattern and blade control method of the smart motor grader based on this. In addition, we verified the performance of waypoint-based path-following depending on scenarios and the blade control's performance through tests.

Pitch Angle Rigging, Tracking and Balancing of Smart UAV Rotor System (스마트무인기 로터 피치각 리깅, 트랙킹 및 밸런싱)

  • Lee, Myeong Kyu;Kim, Yusin;Choi, Seong Wook
    • Journal of Aerospace System Engineering
    • /
    • v.3 no.3
    • /
    • pp.17-23
    • /
    • 2009
  • KARI SUAV (Smart Unmanned Aerial Vehicle) program is currently on the phase of ground and flight test. SUAV is a tilt rotor aircraft having the capability of vertical take-off/landing and high speed forward flight. The SUAV rotor system is 3-bladed, gimbaled hub type, which is not common for conventional helicopter configuration. In this paper, detailed procedure and method of rotor pitch rigging, tracking and balancing were described based on the experience of SUAV ground test.

  • PDF

Application of self-healing technique to fibre reinforced polymer wind turbine blade

  • Fifo, Omosola;Ryan, Kevin;Basu, Biswajit
    • Smart Structures and Systems
    • /
    • v.16 no.4
    • /
    • pp.593-606
    • /
    • 2015
  • This paper presents a novel concept of healing some of the damages in wind turbine blades (WTBs) such as cracks and delamination. This is achieved through an inherent functioning autonomous repairing system. Such wind turbine blades have the benefit of reduced maintenance cost and increased operational period. Previous techniques of developing autonomous healing systems uses hollow glass fibres (HGFs) to deliver repairing fluids to damaged sites. HGFs have been reported with some limitations like, failure to fracture, which undermines their further usage. The self-healing technique described in this paper represents an advancement in the engineering of the delivery mechanism of a self-healing system. It is analogous to the HGF system but without the HGFs, which are replaced by multiple hollow channels created within the composite, inherently in the FRP matrix at fabrication. An in-house fabricated NACA 4412 WTB incorporating this array of network hollow channels was damaged in flexure and then autonomously repaired using the vascular channels. The blade was re-tested under flexure to ascertain the efficiency of the recovered mechanical properties.

Semi-active control of vibrations of spar type floating offshore wind turbines

  • Van-Nguyen, Dinh;Basu, Biswajit;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • v.18 no.4
    • /
    • pp.683-705
    • /
    • 2016
  • A semi-active algorithm for edgewise vibration control of the spar-type floating offshore wind turbine (SFOWT) blades, nacelle and spar platform is developed in this paper. A tuned mass damper (TMD) is placed in each blade, in the nacelle and on the spar to control the vibrations for these components. A Short Time Fourier Transform algorithm is used for semi-active control of the TMDs. The mathematical formulation of the integrated SFOWT-TMDs system is derived by using Euler-Lagrangian equations. The theoretical model derived is a time-varying system considering the aerodynamic properties of the blade, variable mass and stiffness per unit length, gravity, the interactions among the blades, nacelle, spar, mooring system and the TMDs, the hydrodynamic effects, the restoring moment and the buoyancy force. The aerodynamic loads on the nacelle and the spar due to their coupling with the blades are also considered. The effectiveness of the semi-active TMDs is investigated in the numerical examples where the mooring cable tension, rotor speed and the blade stiffness are varying over time. Except for excessively large strokes of the nacelle TMD, the semi-active algorithm is considerably more effective than the passive one in all cases and its effectiveness is restricted by the low-frequency nature of the nacelle and the spar responses.

The Pattern Analysis for Gameplay of RPG(Role-Play Game) Genre base on Smart-phone : Toward 'Blade for Kakao' (스마트폰 기반 RPG 장르의 게임플레이 패턴 분석 : '블레이드 for Kakao'를 중심으로)

  • Han, Sang-Geun;Song, Seung-Keun
    • Cartoon and Animation Studies
    • /
    • s.38
    • /
    • pp.237-258
    • /
    • 2015
  • This research aims to analyze gamer's behavior pattern on 'Blade for Kakao' RPG genre based on smart-phone. Three subjects were recruited using the concurrent protocol method to conduct ten episodes in region 1. As a result, it derived four behavior patterns according to the combination of space type affordance and the arrangement affordance of obstacle(monster). The result of this research revealed the forward attack arranged for the fixed obstacles in the wide space, the indirect attack as avoid-type arranged for scattered obstacles in the same space, the hunting up attack once arranged for the crowded obstacles in the same space, and the pulling attack arranged for obstacles in the narrow space. Moreover, it revealed the character growth and the optimization of attack method according to the attribute affordance of the obstacle(monster). This research expect to offer the design guideline for game level design to investigate the relationship between the game play and affordance in RPG genre based on smart-phone.

A Study on the Productivity Improvement of the Dicing Blade Production Process (다이싱 블레이드 제조공정의 생산성향상에 관한 연구)

  • Mun, Jung-Su;Park, Soo-Yong;Lee, Dong-Hyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.3
    • /
    • pp.147-155
    • /
    • 2016
  • Industry 4.0's goal is the 'Smart Factory' that integrates and controls production process, procurement, distribution and service based on the fundamental technology such as internet of the things, cyber physical system, sensor, etc. Basic requirement for successful promotion of this Industry 4.0 is the large supply of semiconductor. However, company I who produces dicing blades has difficulty to meet the increasing demand and has hard time to increase revenue because its raw material includes high price diamond, and requires very complex and sensitive process for production. Therefore, this study is focused on understanding the problems and presenting optimal plan to increase productivity of dicing blade manufacturing processes. We carried out a study as follows to accomplish the above purposes. First, previous researches were investigated. Second, the bottlenecks in manufacturing processes were identified using simulation tool (Arena 14.3). Third, we calculate investment amount according to added equipments purchase and perform economic analysis according to cost and sales increase. Finally, we derive optimum plan for productivity improvement and analyze its expected effect. To summarize these results as follows : First, daily average blade production volume can be increased two times from 60 ea. to 120 ea. by performing mixing job in the day before. Second, work flow can be smoother due to reduced waiting time if more machines are added to improve setting process. It was found that average waiting time of 23 minutes can be reduced to around 9 minutes from current process. Third, it was found through simulation that the whole processing line can compose smoother production line by performing mixing process in advance, and add setting and sintering machines. In the course of this study, it was found that adding more machines to reduce waiting time is not the best alternative.