• Title/Summary/Keyword: smart

Search Result 20,789, Processing Time 0.046 seconds

Computer vision-based remote displacement monitoring system for in-situ bridge bearings robust to large displacement induced by temperature change

  • Kim, Byunghyun;Lee, Junhwa;Sim, Sung-Han;Cho, Soojin;Park, Byung Ho
    • Smart Structures and Systems
    • /
    • v.30 no.5
    • /
    • pp.521-535
    • /
    • 2022
  • Efficient management of deteriorating civil infrastructure is one of the most important research topics in many developed countries. In particular, the remote displacement measurement of bridges using linear variable differential transformers, global positioning systems, laser Doppler vibrometers, and computer vision technologies has been attempted extensively. This paper proposes a remote displacement measurement system using closed-circuit televisions (CCTVs) and a computer-vision-based method for in-situ bridge bearings having relatively large displacement due to temperature change in long term. The hardware of the system is composed of a reference target for displacement measurement, a CCTV to capture target images, a gateway to transmit images via a mobile network, and a central server to store and process transmitted images. The usage of CCTV capable of night vision capture and wireless data communication enable long-term 24-hour monitoring on wide range of bridge area. The computer vision algorithm to estimate displacement from the images involves image preprocessing for enhancing the circular features of the target, circular Hough transformation for detecting circles on the target in the whole field-of-view (FOV), and homography transformation for converting the movement of the target in the images into an actual expansion displacement. The simple target design and robust circle detection algorithm help to measure displacement using target images where the targets are far apart from each other. The proposed system is installed at the Tancheon Overpass located in Seoul, and field experiments are performed to evaluate the accuracy of circle detection and displacement measurements. The circle detection accuracy is evaluated using 28,542 images captured from 71 CCTVs installed at the testbed, and only 48 images (0.168%) fail to detect the circles on the target because of subpar imaging conditions. The accuracy of displacement measurement is evaluated using images captured for 17 days from three CCTVs; the average and root-mean-square errors are 0.10 and 0.131 mm, respectively, compared with a similar displacement measurement. The long-term operation of the system, as evaluated using 8-month data, shows high accuracy and stability of the proposed system.

A Study on fostering strategy for Port Equipment industry (스마트항만 구축을 위한 항만장비산업 육성 방안 연구)

  • 김보경;한승훈;안승현
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.108-109
    • /
    • 2023
  • The purpose of this study is to set a policy that can be specifically promoted according to the recently announced domestic equipment industry fostering strategy, and to suggest a plan that can be implemented. As a plan to foster the equipment industry, a new technology certification system and a new technology test and verification area operation and vitalization plan were set as alternatives. And a survey was conducted on companies conducting R&D to derive specific demand and introduction plans. As a result of the survey, it was found that there was a high demand for the use of new technology certification systems and testing and verification area. Also demonstration in connection with port equipment, testing and evaluation in connection with accredited verification agency, and preparation of dedicated agencies were derived to foster the equipment industry. Based on this, this study suggests a new technology certification system specialized for port equipment was established and a plan to institutionalize. In addition, in connection with the survey results and certification system, the basic functions and roles of the new technology testing and verification area was established. For future activation, incentives with effective certificates such as exemption of certification costs and issuance of performance confirmation certificates are needed, and efficient operation and management through dedicated organization and certification center were suggested.

  • PDF

Corrosion Behavior and Ultrasonic Velocity in RC Beams with Various Cover Depth (다양한 피복두께를 가진 RC 보의 부식 거동 및 초음파 속도)

  • Jin-Won Nam;Hyun-Min Yang;Seung-Jun Kwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.184-191
    • /
    • 2023
  • With increasing corrosion in RC (Reinforced Concrete) structures, cracks occurred due to corrosion products and bearing load resistance decreased. In this study, corrosion was induced through an accelerated corrosion test (ICM: Impressed Current Method) with 140 hours of duration, and changes in USV (Ultra-Sonic Velocity), flexural failure load, and corrosion weight were evaluated before and after corrosion test. Three levels of cover depth (20 mm, 30 mm, and 40 mm) were considered, and the initial cracking period increased and the rust around steel decreased with increasing cover depth. In addition, the USV linearly decreased with decreasing cover depth and increasing amount of corrosion. In the flexural loading test, the bending capacity decreased by more than 10% due to corrosion, but a clear correlation could not be obtained since the corrosion ratio was small, so that the effect of slip was greater than that of reduced cross-sectional area of steel due to corrosion. As cover depth increased, the produced corrosion amount and USV changed with a clear linear relationship, and the cracking period due to corrosion could be estimated by the gradient of the measured corrosion current.

A Study on Predicting North Korea's Electricity Generation Using Satellite Nighttime Light Data (위성 야간광 자료를 이용한 북한의 발전량 예측 연구)

  • Bong Chan Kim;Seulki Lee;Chang-Wook Lee
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.81-91
    • /
    • 2024
  • Electrical energy is a key source of energy for modern civilization, and changes in electricity generation and consumption are closely related to industry and life in general. In this study, we identified the correlation between electricity generation and nighttime light values in South Korea and used it to predict monthly electricity generation trends in North Korea. The results of the study showed a low Pearson correlation coefficient of 0.34 between nighttime light and electricity generation in Seoul, but a high Pearson correlation coefficient of 0.79 between weighting for Seoul case nighttime light values and electricity generation using monthly average temperature. Using nighttime light values weighting for Seoul case by the average monthly temperature in Pyongyang to predict the monthly power generation trend in North Korea, we found that the month-on-month power generation increase in December 2022 was about 60% higher than the month-on-month power generation increase in December 2020 and 2021. The results of this study are expected to help predict monthly electricity generation trends in regions where monthly electricity generation data does not exist, making it difficult to identify timely industry trends.

A Conceptual Approach for the Effects of COVID-19 on Digital Transformation

  • Fu, Jia;Kim, Injai
    • The Journal of Information Systems
    • /
    • v.32 no.4
    • /
    • pp.211-227
    • /
    • 2023
  • Purpose In the contemporary landscape, marked by the enduring impact of COVID-19 and the recent disruptions stemming from the conflict in Ukraine, the purpose of this study is to navigate the era characterized by pervasive risk and uncertainty. Specifically, the study aims to dissect the impact of the COVID-19 outbreak on digital transformation, exploring the factors influencing this process and considering the multifaceted dynamics at play. The focus extends to the post-COVID-19 landscape, scrutinizing the implications and meanings of digital transformation both before and after the pandemic. Additionally, the study delves into future digital trends, with particular attention to climate and environmental issues, emphasizing corporate responsibilities in averting crises similar to COVID-19. The overarching goal is to provide a holistic perspective, shedding light on both positive and negative facets of digital transformation, and advocating for regulatory enhancements and legal frameworks conducive to a balanced and resilient digital future. Design/methodology/approach This study employs a comprehensive approach to analyze the impact of the COVID-19 outbreak on digital transformation. It considers various facets, such as smart devices reshaping daily routines, transformative changes in corporate ecosystems, and the adaptation of government institutions to the digital era within the broader context of the Fourth Industrial Revolution. The analysis extends to the post-COVID-19 landscape, examining the implications and meanings of digital transformation. Future digital trends, especially those related to climate and environmental issues, are prognosticated. The methodology involves a proactive exploration of challenges associated with digital transformation, aiming to advocate for regulatory enhancements and legal frameworks that contribute to a balanced and resilient digital future. Findings The findings of this study reveal that the digital economy has gained momentum, accelerated by the proliferation of non-face-to-face industries in response to social distancing imperatives during the COVID-19 pandemic. Digital transformation, both preceding and succeeding the onset of the pandemic, has precipitated noteworthy shifts in various aspects of daily life. However, challenges persist, and the study highlights factors that either bolster or hinder the transformative process. In the post-COVID-19 era, corporate responsibilities in averting crises, particularly those resembling the pandemic, take center stage. The study emphasizes the need for a holistic perspective, acknowledging both positive and negative facets of digital transformation. Additionally, it calls for proactive measures, including regulatory enhancements and legal frameworks, to ensure a balanced and resilient digital future.

Effects of Service Quality on Customer Satisfaction and Reuse Intention of Chinese Fashion Product Live Commerce Using SERVQUAL Model in Internet of Things Environment -Focusing on Female College Students in Changchun, China- (사물인터넷 환경에서의 SERVQUAL 모델을 이용한 중국 패션제품 라이브커머스의 서비스품질이 고객만족도 및 재사용 의도에 미치는 영향 -중국 창춘시 여대생을 중심으로-)

  • Mo Liu;Young-Sook Lee
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.1
    • /
    • pp.59-68
    • /
    • 2024
  • China's huge population and industrial diversification have driven increased demand for IoT, and in a social environment where IoT technology is changing all aspects of personal and family life, including smart shopping, this study was conducted in Changchun, China. The study aimed to find ways to meet the Fashion needs of female college students living in the country and promote the development of the fashion product industry by improving the service quality of Chinese fashion product live commerce. The analysis results are as follows. First, the service quality characteristics of Chinese fashion product live commerce had a positive effect on customer satisfaction. Second, the service quality characteristics of Chinese fashion product live commerce had a positive effect on reuse intention. Third, customer satisfaction had a positive effect on reuse intention. Based on these results, it can be concluded that improving the service quality of live commerce can directly promote product sales and create direct economic benefits. In addition, based on the results of the study, which show that the service quality of fashion product live commerce affects customer satisfaction and reuse intention, it is judged that it will provide useful information in establishing marketing strategies for live commerce platforms by region and target.

The Proposal on the Rational Reorganization of the Radio stations Management : Focusing on the Introduction of SDoC for Radio Inspection for Telco (무선국 관리의 합리적 개선방안에 관한 제안 - 무선국의 자기적합성선언 제도 도입 검토를 중심으로 -)

  • Ho-Yeong Kim;Won-Il Roh;Seong-Jhin Choi
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.737-746
    • /
    • 2023
  • As the core infrastructure to lead technical innovation for the fourth industrial revolution, economic value and utilizations of radiowaves are increased rapidly. The objectives of this study are to recognize the growing trend of radio stations that transmit information using radiowaves, a limited resource of the country, and to propose developed plans for the radio stations operation system in line with the changing radio technology and use environment. To be specific, the detailed implementation procedures and methods of the system were derived in accordance with the government's plan to convert the complete inspection of radio stations into a SDoC(Self Declaration of Conformity) by the telco. SDoC is a policy that grants autonomy and responsibility for radio waves interference management to existing telecom operator recognized as having radio stations operating capabilities. It has significance in that the function of radio stations inspection, which is a representative technical regulation, is efficiently distributed to the government and the private sector. This study has significance in providing reference for expediting deregulation in the radiowaves management policy.

Development of smart car intelligent wheel hub bearing embedded system using predictive diagnosis algorithm

  • Sam-Taek Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.1-8
    • /
    • 2023
  • If there is a defect in the wheel bearing, which is a major part of the car, it can cause problems such as traffic accidents. In order to solve this problem, big data is collected and monitoring is conducted to provide early information on the presence or absence of wheel bearing failure and type of failure through predictive diagnosis and management technology. System development is needed. In this paper, to implement such an intelligent wheel hub bearing maintenance system, we develop an embedded system equipped with sensors for monitoring reliability and soundness and algorithms for predictive diagnosis. The algorithm used acquires vibration signals from acceleration sensors installed in wheel bearings and can predict and diagnose failures through big data technology through signal processing techniques, fault frequency analysis, and health characteristic parameter definition. The implemented algorithm applies a stable signal extraction algorithm that can minimize vibration frequency components and maximize vibration components occurring in wheel bearings. In noise removal using a filter, an artificial intelligence-based soundness extraction algorithm is applied, and FFT is applied. The fault frequency was analyzed and the fault was diagnosed by extracting fault characteristic factors. The performance target of this system was over 12,800 ODR, and the target was met through test results.

A Study of the Correlation Between Nighttime Light and Individual Land Price by Province in South Korea, Using DMSP OLS Data (야간광과 남한의 시도별 개별 공시지가 총액의 상관관계 연구 - DMSP OLS 자료를 중심으로)

  • Bong Chan Kim ;Seulki Lee ;Chang-Wook Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.729-741
    • /
    • 2023
  • The Operational Linescan System (OLS)sensor is a sensor aboard satellites launched through the Defense Meteorological Satellite Program (DMSP) that detects light in the visible and infrared bands emitted at night. Studies by several researchers have shown a high correlation between nighttime light data from OLS sensors and gross domestic product values. In this study, we investigated the correlation of nighttime light data with the total amount of individual land prices, which is one of the various indicators related to economic development. The study found that most cities and provinces showed a high correlation with a correlation coefficient of more than 0.7, and the correlation coefficient of 0.7837 between the total amount of individual land price and nighttime light data for the entire South Korea was also high. However, unlike other cities and provinces, Seoul has a low correlation coefficient of 0.5648 between nighttime light and the total amount of individual land price, which is analyzed as a reason that the digital number value of the OLS sensor is close to the maximum value and cannot show further brightness changes. This study is expected to help identify announced land prices in areas where announced land prices are not systematically organized and to analyze land use changes in such areas.

3D Simulation Study to Develop Automated System for Robotic Application in Food Sorting and Packaging Processes (식품계량 및 포장 공정 로봇 적용 자동화 시스템 개발을 위한 3D 시뮬레이션 연구)

  • Seunghoon Baek;Seung Eel Oh;Ki Hyun Kwon;Tae Hyoung Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.5
    • /
    • pp.230-238
    • /
    • 2023
  • Small and medium-sized food manufacturing enterprises are largely reliant on manual labor, from inputting raw materials to palletizing the final product. Recently, there has been a trend toward smartness and digitization through the implementation of robotics and sensor data technology. In this study, we examined the effectiveness of improvement through 3D simulation on two repetitive work processes within a food manufacturing company. These processes involve workers whose speed cannot match the capacity of the applied equipment. Two manual processes were selected: the weighing and packing process performed by workers after skewer assembly, and the manual batch process of counting randomly delivered frozen foods, packing (both internal and external), and palletizing. The production volume, utilization rate, and number of workers were chosen as verification indicators. As a result of the simulation for improving the 3D process, production increased by 13.5% and 56.8% compared to the existing process, respectively. This was particularly evident in the process of applying palletizing robots. In both processes, as the utilization rate and number of input workers decreased, robots could replace tasks with high worker fatigue, thereby reducing work overload. This study demonstrates the potential to visually compare the process flow improvement using 3D simulations and confirms the possibility of pre-validation for improvement.