• Title/Summary/Keyword: small-scale demonstration

Search Result 36, Processing Time 0.025 seconds

Result of CO2 Geological Storage Site Survey for Small-scale Demonstration in Pohang Basin, Yeongil Bay, SE Korea (영일만 해상 포항분지 소규모 CO2 지중저장 실증을 위한 부지 탐사 결과)

  • Shinn, Young Jae;Kwon, Yi Kyun;Yoon, Jong-Ryeol;Kim, Byoung-Yeop;Cheong, Snons
    • The Journal of Engineering Geology
    • /
    • v.28 no.2
    • /
    • pp.161-174
    • /
    • 2018
  • $CO_2$ storage site for small-scale demonstration has been investigated in Yeongil Bay, Pohang, SE Korea, using seismic survey and exploration well data. We found a potential storage formation consisting mainly of conglomerate and sandstone. The storage formation unconformably overlies volcanic basement rocks that are located in a depth from 650 to 950 m (below sea level). The depth of the storage formation is suitable for injecting supercritical $CO_2$ in the Pohang Basin. The average thickness of the storage formation is about 123 m, which possibly provides sufficient capacity at the level of small-scale storage demonstration. The overlying fine-grained deposits consist mainly of marine hemipelagic muds and interlayered turbidite sands. The overlying formation is considered as a good seal rock that is over 600 m thick and widely distributed in the onshore and offshore portions of the basin. NNE-trending faults found in the study area likely formed at basement level, probably not continue to seafloor. Such faults are interpreted as syndepositional faults involved to the basin initiation. This study reveals that the offshore area of the Pohang Basin contains deep geological formations suitable for small-scale $CO_2$ storage demonstration.

A versatile small-scale structural laboratory for novel experimental earthquake engineering

  • Chen, Pei-Ching;Ting, Guan-Chung;Li, Chao-Hsien
    • Earthquakes and Structures
    • /
    • v.18 no.3
    • /
    • pp.337-348
    • /
    • 2020
  • Experimental testing has been considered as one of the most straightforward approaches to realize the structural behavior for earthquake engineering studies. Recently, novel and advanced experimental techniques, which combine numerical simulation with experimental testing, have been developed and applied to structural testing practically. However, researchers have to take the risk of damaging specimens or facilities during the process of developing and validating new experimental methods. In view of this, a small-scale structural laboratory has been designed and constructed in order to verify the effectiveness of newly developed experimental technique before it is applied to large-scale testing for safety concerns in this paper. Two orthogonal steel reaction walls and one steel T-slotted reaction floor are designed and analyzed. Accordingly, a large variety of experimental setups can be completed by installing servo-hydraulic actuators and fixtures depending on different research purposes. Meanwhile, a state-of-the-art digital controller and multiple real-time computation machines are allocated. The integration of hardware and software interfaces provides the feasibility and flexibility of developing novel experimental methods that used to be difficult to complete in conventional structural laboratories. A simple experimental demonstration is presented which utilizes part of the hardware and software in the small-scale structural laboratory. Finally, experimental layouts of future potential development and application are addressed and discussed, providing the practitioners with valuable reference for experimental earthquake engineering.

Introduction of KIER Pyrolysis Process and 3,000 ton/yr Demonstration Plant (KIER의 열분해유화 공정 기술과 실증플랜트 소개)

  • Shin, Dae-Hyun;Jeon, Sang-Gu;Kim, Kwang-Ho;Lee, Kyong-Hwan;Roh, Nam-Sun;Lee, Ki-Bong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.479-482
    • /
    • 2008
  • Since late of 2000, KIER has developed a novel pyrolysis process for production of fuel oils from polymer wastes. It could have been possible due to large-scale funding of the Resource Recycling R&D Center. The target was to develop an uncatalyzed, continuous and automatic process producing oils that can be used as a fuel for small-scale industrial boilers. The process development has proceeded in three stages bench-scale unit, pilot plant and demonstration plant. As a result, the demonstration plant having capacity of 3,000 tons/year has been constructed and is currently under test operation for optimization of operation conditions. The process consisted of four parts ; feeding system, cracking reactor, refining system and others. Raw materials were pretreated via shredding and classifying to remove minerals, water, etc. There were 3 kind of products, oils(80%), gas(15%), carbonic residue(5%). The main products i.e. oils were gasoline and diesel. The calorific value of gas has been found to be about 18,000kcal/$m^3$ which is similar to petroleum gas and shows that it could be used as a process fuel. Key technologies adopted in the process are 1) Recirculation of feed for rapid melting and enhancement of fluidity for automatic control of system, 2) Tubular reactor specially-designed for heavy heat flux and prevention of coking, 3)Recirculation of heavy fraction for prevention of wax formation, and 4) continuous removal & re-reaction of sludge for high yield of main product (oil) and minimization of residue. The advantages of the process are full automation, continuous operation, no requirement of catalyst, minimization of coking and sludge problems, maximizing the product(fuel oil) yield and purity, low initial investment and operation costs and environment- friendly process. In this presentation, background of pyrolysis technology development, the details of KIER pyrolysis process flow, key technologies and the performances of the process will be discussed in detail.

  • PDF

Drilling and Completion of CO2 Injection Well in the Offshore Pohang Basin, Yeongil Bay (포항분지 해상 CO2 주입정 시추 완결 및 구축)

  • Won, Kyoung-Sik;Lee, Dae-Sung;Kim, Sang-Jun;Choi, Seong-Do
    • The Journal of Engineering Geology
    • /
    • v.28 no.2
    • /
    • pp.193-206
    • /
    • 2018
  • In this study, as part of the "Small-scale $CO_2$ Injection-Demonstration Project in Offshore Pohang Basin", we performed drilling and completion of a $CO_2$ injection well from the offshore platform installed in the Yeongil Bay, Pohang city, Gyeongsang buk-do. The drilling of injection well was carried out from an offshore platform installing on the sediment formations of the Pohang Basin. Drilling diameters were reduced by stages, depending on the formation pressure and groundwater pressure along a depth and the casing installation and cement grouting in drilled hole were performed at each stage. The injection well was drilled to a final depth of 816.5 m with a hole diameter of 4 7/8 inches (${\Phi}124mm$) and the perforated casing for an injection section was installed in a depth of 746.5~816.5 m. Injection tubing, packer, and christmas tree were installed for the completion of an injection well for $CO_2$. The validation project of the $CO_2$ injection was accomplished successfully by drilling the injection well and installing the injection facilities, and through the suitable $CO_2$ injection process. The current injection facility is a facility for small-scale injection demonstration of 100 tons. In the case of large-scale demonstration facility test of a capacity of 10,000 tons, research is underway through the upgrading of the injection facilities.

Demonstration-scale Offshore CO2 Storage Project in the Pohang Basin, Korea (포항분지 해상 중소규모 CO2 저장 실증연구)

  • Kwon, Yi Kyun
    • The Journal of Engineering Geology
    • /
    • v.28 no.2
    • /
    • pp.133-160
    • /
    • 2018
  • $CO_2$ storage is a very important technology for reduction of greenhouse gas emissions and has been considered as almost the only viable and effective option for immediate large-scale $CO_2$ sequestration. Small-scale demonstration project for offshore $CO_2$ storage in the Pohang Basin is the transitional stage R&D program for technological preparation of large-scale $CO_2$ storage project in Korea. Through the extensive exploration research for prospective $CO_2$ storage sites, the offshore strata in the Pohang Basin was recommended for the storage formation of the small-scale demonstration project. The Pohang Offshore Storage Project launched at 2013, and has accomplished the technical demonstration and technological independence in a wide range of $CO_2$ storage technology, such as geophysical exploration, storage site characterization, storage design, offshore platform construction, injection-well drilling and completion, deployment of injection facility, operation of $CO_2$ injection, and $CO_2$ monitoring. The project successfully carried out $CO_2$ test injection in early 2017, and achieved its final goal for technical development and demonstration of $CO_2$ storage in Korea. The realization of $CO_2$ injection in this project is the measurable result and has been recorded as the first success in Korea. The Pohang Offshore Storage Project has a future plan for the continuous operation of $CO_2$ injection and completion of $CO_2$ monitoring system. The project has provided in-house technical and practical expertises, which will be a solid foundation for the commercial-scale $CO_2$ storage business in Korea. Additionally, the project will help to secure national technical competitiveness in growing international technology market for $CO_2$ storage.

Summary of the engine system research using small jet engines in JAXA

  • Futamura, Hisao;Okai, Keiichi;Koh, Masaharu;Mizuno, Takuya;Yanagi, Ryoji
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.763-767
    • /
    • 2004
  • A possible and practical engine system research method is proposed. Varieties of objectives of the engine component and system technology developments are fulfilled by the small scale rig and engine demonstration. Some research applications of small jet engines in National Aerospace Laboratory of Japan (NAL) are presented together with historical overview.

  • PDF

Demonstration of Heat Dissipation Performance of Copper Plate in Engineered Barrier System

  • Minsoo Lee;Jin-Seop Kim;Min-Seop Kim;Seok Yoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.2
    • /
    • pp.105-115
    • /
    • 2024
  • In this study, we employed a small-scale experiment to demonstrate the introduction of a thin copper heat dissipation plate into a bentonite buffer layer of an engineered barrier system. This experiment designed for spent nuclear fuel disposal can effectively reduce the maximum temperature of the bentonite buffer layer, and ultimately, make it possible to reduce the area of the disposal site. For the experiment, a small-scale engineered barrier system with a copper heat dissipation plate was designed and manufactured. the thickness of the cylindrical buffer was about 2 cm, which was about 1/20 of KAERI Repository System (KRS). At a power supply of 250 W, the maximum buffer temperature reduced to a mere 1.8℃ when the thin copper plate was introduced. However, the maximum surface temperature reduced to a remarkable 9.1℃, when a U-collar copper plate was introduced, which had a good contact with the other barrier layers. Consequently, we conclude that the introduction of the thin copper plate into the engineered barrier system for spent nuclear fuel disposal can effectively reduce the maximum buffer temperature in high-level radioactive waste disposal repositories.

PERFORMANCE OF SMALL SCALE LIVESTOCK/CROP DEMONSTRATION-CUM-TRAINING FARMS IN SRI LANKA

  • de Jong, R.;Kuruppu, L.G.;Jayawardena, Q.W.;Ibrahim, M.N.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.4
    • /
    • pp.571-582
    • /
    • 1994
  • Three livestock/crop demonstration-cum-training farms have been established on plots of half, one and two acres, typical of the "Kandyan Forest Garden System" Vegetables, bananas, pepper, coffee, coconut and fruit trees are widely spaced, for intercropping with grass, and have been surrounded with live fences that also provide fodder for livestock to increase the family income. Each unit is operated by a selected employee and his family under a monthly incentive scheme based upon the gross margin. On these farms the technical parameters in dairying are better than elsewhere in the Mid-Country. Economic performance over 1985-1992 showed that dairying contributed most to the total gross margin of the half, one and two acre units, i.e. 31, 63 and 69%, respectively. Next came crops (29%, 37% and 19%), poultry (22%, 0% and 9%), and goats (18%, 0% and 3%). In the three farms the cash income per Sri Lankan Rupee spent was 1.5, 4.6 and 2.1, respectively. The overall ratio was 3.2 for dairying, 1.1 for poultry, 4.5 for goats and 9.9 for crops. Actual family labour in the three farms was 548, 548 and 639 days, compared to the 270, 330 and 440 days anticipated in the initial feasibility study. The average incentive payments, which were 20% (half acre), 61% (one acre) and 133% (two acres) of the parastatal salary of the employee, were only insufficient for the extra labour applied in the half acre unit. Dairying and goats proved to be attractive cash earners with a domestic fuel were important benefits. Poultry did little to improve farm income.

PILLAR: Integral test facility for LBE-cooled passive small modular reactor research and computational code benchmark

  • Shin, Yong-Hoon;Park, Jaeyeong;Hur, Jungho;Jeong, Seongjin;Hwang, Il Soon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3580-3596
    • /
    • 2021
  • An integral test facility, PILLAR, was commissioned, aiming to provide valuable experimental results which can be referenced by system and component designers and used for the performance demonstration of liquid-metal-cooled, passive small modular reactors (SMRs) toward their licensing. The setup was conceptualized by a scaling analysis which allows the vertical arrangements to be conserved from its prototypic reactor, scaled uniformly in the radial direction achieving a flow area reduction of 1/200. Its final design includes several heater rods which simulate the reactor core, and a single heat exchanger representing the steam generators in the prototype. The system behaviors were characterized by its data acquisition system implementing various instruments. In this paper, we present not only a detailed description of the facility components, but also selected experimental results of both steady-state and transient cases. The obtained steady-state test results were utilized for the benchmark of a system code, achieving a capability of accurate simulations with ±3% of maximum deviations. It was followed by qualitative comparisons on the transient test results which indicate that the integral system behaviors in passive LBE-cooled systems are able to be predicted by the code.

Demonstration of Adaptive Analogue Beam Forming in the E-Band

  • Dyadyuk, Val;Stokes, Leigh;Nikolic, Nasiha;Weily, Andrew R.
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.138-145
    • /
    • 2010
  • In this paper, we report the test results of a small-scale prototype that implements an analogue-beam-formed phased antenna array in the E-band. A four-channel dual-conversion receive RF module for 71~76 GHz frequency band has been developed and integrated with a linear end-fire antenna array. Measured performance is very close to the simulated results. An ad-hoc wireless communication system has also been demonstrated. Low BER was measured for an 8PSK data stream at 1.5 Gbps with the receive array beam formed in the direction of arrival of the transmitted signal. To our knowledge this is the first steerable antenna array reported to date in the E-band.