• Title/Summary/Keyword: small-scale chemistry

Search Result 64, Processing Time 0.024 seconds

The Effect of Small-Scale Chemistry(SSC) Lab Program in High School Science Classes (Small-Scale Chemistry(SSC)를 적용한 고등학교 과학 수업의 효과)

  • Hong, Hun-Gi;Yu, Mi-Hyeon;Yun, Hui-Suk
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.3
    • /
    • pp.256-262
    • /
    • 2006
  • purpose of this study was to examine the effect of Small-Scale Chemistry(below SSC) Lab Program on academic achievement and science-related affective domain of high school students. For this study, SSC Lab Program was developed on the basis of analyzing the chemistry part of the high school science textbook in the 7th curriculum. The experimental group was received SSC experiment lessons(below SSC group), and the comparison group was received traditional lessons. According to the result of this study, there was a significant difference (p<.01) between a SSC group and a comparison group in academic achievement. Also, there were significant differences in science-related affective domain, especially interest and scientific attitude. It showed that SSC Lab Program was more effective to improve the academic achievement and science-related affective domain. Student perceptions on SSC Lab Program were also discussed. Majority of students thought that SSC lab program was an effective and interesting way in science study.

The Effect of the 'Chemistry and Experiment' Course Employing Small-Scale Chemistry on Pre-service Elementary Teachers' Attitude toward Laboratory Work and Science Teaching Efficacy (Small-Scale Chemistry를 적용한 '화학 및 실험' 강좌가 초등 예비 교사의 실험 활동에 대한 태도 및 과학 교수 효능감에 미치는 효과)

  • Yoon, Hee-Sook;Yoo, Mi-Hyun
    • Journal of Korean Elementary Science Education
    • /
    • v.26 no.4
    • /
    • pp.449-458
    • /
    • 2007
  • The purpose of this study was to investigate the effect of the 'Chemistry and Experiment' course employing the Small-Scale Chemistry(SSC) experiment on the 30 pre-service elementary teachers' attitude toward laboratory work and their science teaching efficacy. This study also examined the perception of the pre-service elementary teachers about the SSC experiment. In the result, there were found significant interactions between the treatment and prior level in attitude toward laboratory work. The attitude toward laboratory work of low-level pre-service teachers was improved while that of high-level pre-service teachers remained unchanged. However, there was no significant change in their beliefs regarding science teaching efficacy. Through the analysis of questionnaire, it was also found that they had positive perceptions about the SSC experiment, and most of them as pre-service teachers found the SSC experiment helpful to teach chemistry experiments.

  • PDF

The Effects of Experimental Learning Using the Small-Scale Chemistry on High School Students' Academic Achievement, Scientific Attitude and Science-related Attitude in Chemistry I (Small-Scale Chemistry를 활용한 실험수업이 고등학생들의 화학 I 교과 학업성취도와 과학적 태도 및 과학에 관련된 태도에 미치는 영향)

  • Kim, Ji-Sook;Hwang, Hyun-Sook;Park, Se-Yeol;Kim, Dong-Jin;Park, Kuk-Tae
    • Journal of Science Education
    • /
    • v.35 no.2
    • /
    • pp.119-126
    • /
    • 2011
  • The purpose of this study was to examine the effects of experimental learning using the small-scale chemistry (SSC) on high school students' academic achievement, scientific attitude and science-related attitude in high school chemistry I. For this study, two high school 2nd grade classes were divided into an experimental group and a control group. Experimental learning using the SSC in the experimental group, traditional experimental learning presented in the textbook in the control group were performed. The results showed that experimental learning using the SSC compared to traditional experimental learning was effective in improving academic achievement. The experimental learning also was effective in improving voluntary, patience, cooperativity in the scientific attitudes and social implications of science, attitude for science curriculum, attitude toward science in the science-related attitudes. Therefore, experimental learning using the SSC is necessary to actively utilize in high school chemistry curriculum.

  • PDF

The Effect of Small-Scale Chemistry(SSC) Lab Program on Science-Majored Student's Academic Self-Efficacy and Science-Related Affective Domain in High School Chemistry I Classes (Small-Scale Chemistry(SSC)를 적용한 화학 I 수업이 자연계열 고등학생의 학업적 자기효능감 및 과학 관련 정의적 특성에 미치는 영향)

  • Yoo, Mi-Hyun;Yoon, Hee-Sook;Hong, Hun-Gi
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.5
    • /
    • pp.433-446
    • /
    • 2007
  • The purpose of this study was to examine the effect of Small-Scale Chemistry(SSC) lab program on the academic self-efficacy and the science-related affective domain of 11th grade science-majored students. For this study, a SSC lab program was developed on the basis of analyzing the textbook of high school chemistry I in the 7th curriculum, and the experimental group was received SSC experiment lessons(SSC group), and the comparison group was received traditional experiment lessons. After students were grouped high and low level according to the students' prior science achievement score, the differences between the two groups were investigated using 2-way ANCOVA. From the result of this study, we found that the SSC lab program was more effective than the traditional Large-Scale lab program based on the textbook in academic self-efficacy. And the scores of interest toward science-related careers and creativity for the SSC group, which are subcategories of science-related affective domain were significantly higher than those for the comparison group. In students' perceptions on the SSC lab program, majority of students thought that the SSC lab program was convenient, effective and interesting.

New Methods of Producing Copper Sulfate Crystals Using Small-Scale Chemistry(SSC) in Elementary School Science (초등과학에서 미량화학(SSC)을 이용한 황산구리 결정 만들기의 새로운 방법)

  • Han, Sang-Joon;Kim, Sung-Kyu
    • Journal of Environmental Science International
    • /
    • v.17 no.9
    • /
    • pp.981-992
    • /
    • 2008
  • This study examined how to produce new methods of copper (II) sulfate crystallization by using a small-scale chemistry tool such as small-scale reaction surface and petri dish. The making of copper(II) sulfate is included in the 5th grade elementary science textbooks. Various copper(II) compounds were reacted with a 2 M sulfuric acid solution. The result of this study is as follows: Seven small amounts of copper(II) compounds were reacted with a few drops of 2 M sulfuric acid solution at room temperature to make a copper(II) sulfate crystal of triclinic shape. Using the petri dish method, a copper(II) sulfate crystal could be identified within one hour of reacting copper(II) hydroxide, copper(II) carbonate, copper(II) nitrate, copper(II) perchlorate, cupric(II) formate from a few drops of 2 M sulfuric acid solution at room temperature. When using the lap top method for copper(II) perchlorate, cupric formate, a proper crystal could be identified within one hour as well. SSC methods were used for the first time to make a copper sulfate crystal via chemical reaction. We can make a copper(II) sulfate crystal using a simple method which is easier, safer and saves time in class. And since a small quantity of chemicals are being used in SSC chemical methods, waste is greatly reduced. This lessens the amount of environmental problems caused by the experiment. This can be helpful in preserving nature. In addition the cost of chemical and laboratory equipment is greatly reduced because it uses material that we find in our daily lives. There will be continued study of small-scale methods such as improvement of new programs, study and training of teachers, and securing SSC tools. I would like to suggest such as SSC methods are applicable in elementary School Science. I would like it to become a wide spread program.

The Effects of Small-Scale Chemistry Laboratoty Programs in High School Chemistry II Class (고등학교 화학II 수업에 적용한 Small-Scale Chemistry 실험의 효과)

  • Hong, Ji-Hye;Park, Jong-Yoon
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.4
    • /
    • pp.318-327
    • /
    • 2007
  • The purpose of this study is to examine the effects of small-scale chemistry(SSC) laboratory activities implemented in high school chemistry II classes on the students' inquiry process skills and science-related attitudes. For this study, 112 students in the 12th grade were chosen and divided into an experimental and a control group. Seven SSC lab programs that can replace the traditional experiments in chemistry II textbooks were selected and administered to the experimental group while the traditional textbook experiments were administered to the control group. The results showed that there was a significant difference in the enhancement of inquiry process skills between the two groups while no significant difference was found in science-related attitudes. Further analysis showed that the difference in the inquiry process skills came from the basic inquiry process skills. The experimental group students thought that the SSC experiments have many advantages compared to the traditional experiments, e.g., individual work, learning lab and theory in parallel, short experiment time, safety, environmental aspects, etc. These results suggest that the SSC lab programs are valuable in high school chemistry classes and developing and distributing various SSC lab programs is needed to replace the traditional experiments in the current textbooks.

Analysis of Precipitate Formation Reaction for Measuring Chemical Reaction Rate and Its Development Appling Small-Scale Chemistry (앙금 생성 반응을 이용한 화학반응속도 측정 실험의 분석과 Small-Scale Chemistry를 적용한 실험 개발)

  • Park, Kuk-Tae;Noh, Ji-Hyun;Kim, Dong-Jin;Ryu, Ran-Yeong;Noh, Yun-Mi;Kim, Myo-Kyung;Lee, Sang Kwon
    • Journal of the Korean Chemical Society
    • /
    • v.52 no.3
    • /
    • pp.303-314
    • /
    • 2008
  • The purpose of this study was to understand the experiment for measuring chemical reaction rate by precipitate formation and to develop experiments applying small-scale chemistry. For this study, the experimental method for measuring the effect of concentration and temperature on chemical reaction rates presented in the 10 high school science textbooks were classified by their experimental methods of confirming production. Subsequently, problems observed in carrying out the experiments for measuring chemical reaction rates by precipitate formation frequently presented in the 10 high school science textbooks were analyzed. Experiments applying small-scale chemistry were developed measuring chemical reaction rate by precipitate formation. According to the result of this study, there were some problems in the experimental method of precipitate formation for measuring chemical reaction rates presented in the high school science textbooks. Those problems in the science textbook experiments were insufficient specification of mixing methods of reaction solutions, obscurity of knowing when the character letter X disappeared, time delay in collecting the experimental data, formation of hazardous sulfur dioxide, uneasiness of fixing water bath container, controlling the reaction temperature, and low reproducibility. Those problems were solved by developing experiments applying smallscale chemistry. Presenting the procedure of mixing reaction solutions on the A4 reaction paper sheet made the experimental procedure clearly, using well plates and stem pipette shortened the reaction time and made it possible to continuously collect the experimental data. Furthermore, the quantity of hazardous sulfur dioxide was reduced 1/7 times and the time when the character letter X disappeared could be observed clearly. Since experiments for measuring the effect of concentration and temperature on chemical reaction rates could be performed in 30 minutes, the developing experiments applying SSC would help students understand the scientific concepts on the effect of concentration and temperature on chemical reaction rates with enough time for experimental data analysis and discussion.

Synthesis of Novel Chiral Diamino Alcohols and Their Application in Copper-Catalyzed Asymmetric Allylic Oxidation of Cycloolefins

  • Faraji, Laleh;Samadi, Saadi;Jadidi, Khosrow;Notash, Behrouz
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.1989-1995
    • /
    • 2014
  • The small library of new enantiomerically pure (S,S)-diamino alcohols 1 and their hydroxyldiamide precursors 2 were conveniently synthesized on a gram scale from inexpensive and commercially chiral pool amino acids. The catalytic and induced asymmetric effects of the chiral ligands 1 in the asymmetric allylic oxidation of cycloolefins were investigated.

Analysis of Experiments for the Rules of Material Change Unit in 9th Grade Science Textbooks and the Development of Experiments Applying Small-Scale Chemistry (9학년 과학교과서 물질변화에서의 규칙성 단원 실험 분석과 Small-Scale Chemistry를 적용한 실험 개발)

  • Ryu, Ran-Yeong;Kim, Dong-Jin;Hwang, Hyun-Sook;Park, Se-Yeol;Lee, Sang-Kwon;Park, Kuk-Tae
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.529-540
    • /
    • 2011
  • The purpose of this study was to analyze experiments for the rules of material change unit in 9th grade science textbooks and develop experiments applying small-scale chemistry (SSC). For this study, experimental methods for the precipitation experiment, water electrolysis experiment, decomposition of hydrogen peroxide experiment presented in the 9 science textbooks were analyzed. Problems and improvements that were needed were extracted by 13 science teachers performing the experiments. Experiments applying SSC were developed based on the improvements needed. Afterwards, 19 pre-service science teachers performed both the developed SSC experiments and the science textbooks' experiments. A questionnaire about merits and demerits of the experiments applying SSC was performed. According to the results of this study, most of the 9th grade science textbooks included the lead iodide precipitation experiment, water electrolysis experiment by Hoffman voltameter, and decomposition of hydrogen peroxide experiment using catalytic manganese dioxide. Improvements were needed on the quantity of reagents, time for performing experiments, and scale of experimental apparatus. Merits of the developed experiments applying SSC which used small amount of reagents were safety, easy waste material disposal, short reaction time, and reproducible experimental results. Demerits of the experiments applying SSC were difficulty in observing, decreased achievement, and lack of skill in handling small-scale apparatus. Therefore, if the experiments developed applying SSC were to be utilized in 9th grade science experiments, it will be possible to use less reagent and be able to teach and carry out reproducible experiments at the same time. Also, the reproducible experiments based on SSC will help students under stand the scientific concepts for the rules of material change unit.