• Title/Summary/Keyword: small-area estimation

Search Result 332, Processing Time 0.023 seconds

Estimation of the Flood Area Using Multi-temporal RADARSAT SAR Imagery

  • Sohn, Hong-Gyoo;Song, Yeong-Sun;Yoo, Hwan-Hee;Jung, Won-Jo
    • Korean Journal of Geomatics
    • /
    • v.2 no.1
    • /
    • pp.37-46
    • /
    • 2002
  • Accurate classification of water area is an preliminary step to accurately analyze the flooded area and damages caused by flood. This step is especially useful for monitoring the region where annually repeating flood is a problem. The accurate estimation of flooded area can ultimately be utilized as a primary source of information for the policy decision. Although SAR (Synthetic Aperture Radar) imagery with its own energy source is sensitive to the water area, its shadow effect similar to the reflectance signature of the water area should be carefully checked before accurate classification. Especially when we want to identify small flood area with mountainous environment, the step for removing shadow effect turns out to be essential in order to accurately classify the water area from the SAR imagery. In this paper, the flood area was classified and monitored using multi-temporal RADARSAT SAR images of Ok-Chun and Bo-Eun located in Chung-Book Province taken in 12th (during the flood) and 19th (after the flood) of August, 1998. We applied several steps of geometric and radiometric calculations to the SAR imagery. First we reduced the speckle noise of two SAR images and then calculated the radar backscattering coefficient $(\sigma^0)$. After that we performed the ortho-rectification via satellite orbit modeling developed in this study using the ephemeris information of the satellite images and ground control points. We also corrected radiometric distortion caused by the terrain relief. Finally, the water area was identified from two images and the flood area is calculated accordingly. The identified flood area is analyzed by overlapping with the existing land use map.

  • PDF

Sub-pixel Evaluation with Frequency Response Analysis

  • OKAMOTO Koji
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2001.12a
    • /
    • pp.14-22
    • /
    • 2001
  • The frequency responses on the sub-pixel evaluation technique were investigated using the Monte-calro Simulation technique. The frequency response by the FFT based cross-correlation gives very good results, however, the gain loss does exist for the small displacement, (less than 0.5 pixel). While, the no gain loss is observed in the Direct Cross-correlation, however, the sub-pixel accuracy was limited to be about 0.1 pixel, i.e., it could not detect the small displacement. To detect the higher accurate sub-pixel displacement, the gradient based technique is the best. For the small interrogation area (e.g., 4x4), only the gradient technique can detect the small displacement correctly.

  • PDF

Marginal Likelihoods for Bayesian Poisson Regression Models

  • Kim, Hyun-Joong;Balgobin Nandram;Kim, Seong-Jun;Choi, Il-Su;Ahn, Yun-Kee;Kim, Chul-Eung
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.2
    • /
    • pp.381-397
    • /
    • 2004
  • The marginal likelihood has become an important tool for model selection in Bayesian analysis because it can be used to rank the models. We discuss the marginal likelihood for Poisson regression models that are potentially useful in small area estimation. Computation in these models is intensive and it requires an implementation of Markov chain Monte Carlo (MCMC) methods. Using importance sampling and multivariate density estimation, we demonstrate a computation of the marginal likelihood through an output analysis from an MCMC sampler.

Estimation of b-value for Earthquakes Data Recorded on KSRS (KSRS 관측자료에 의한 b-값 평가)

  • 신진수;강익범;김근영
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.28-34
    • /
    • 2002
  • The b-value in the magnitude-frequency relationship logN(m) = $\alpha$ - bmwhere N(m) is the number of earthquakes exceeding magnitude m, is important seismicity parameter In hazard analysis. Estimation of the b-value for earthquake data observed on KSRS array network is done employing the maximum likelihood technique. Assuming the whole Korea Peninsula as a single seismic source area, the b-value is computed at 0.9. The estimation for KMA earthquake data is also similar to that. Since estimate is a function of minimum magnitude, we can inspect the completeness of earthquake catalog in the fitting process of b-value. KSRS and KMA data lists are probably incomplete for magnitudes less than 2.0 and 3.0, respectively. Examples from probabilistic seismic hazard assessment calculated for a range of b-value show that the small change of b-value has seriously effect on the prediction of ground motion.

  • PDF

Clarifying Warhead Separation from the Reentry Vehicle Using a Novel Tracking Algorithm

  • Liu Cheng-Yu;Sung Yu-Ming
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.5
    • /
    • pp.529-538
    • /
    • 2006
  • Separating a reentry vehicle into warhead and body is a conventional and efficient means of producing a huge decoy and increasing the kinetic energy of the warhead. This procedure causes the radar to track the body, whose radar cross section is larger, and ignore the warhead, which is the most important part of the reentry vehicle. However, the procedure is difficult to perform using standard tracking criteria. This study presents a novel tracking algorithm by integrating input estimation and modified probabilistic data association filter to solve this difficulty in a clear environment. The proposed algorithm with a new defined association probability in this filter provides a good tracking capability for the warhead ignoring the radar cross section. The simulation results indicate that the errors between the estimated and the warhead trajectories are reduced to a small interval in a short time. Therefore, the radar can produce a beam to illuminate to the right area and keep tracking the warhead all the way. In conclusion, this algorithm is worthy of further study and application.

The Relationship between NDVI and Forest Leaf Area Index in MODIS Land Product

  • Woo C.S.;Lee K.S.;Kim K.T.;Lee S.H.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.166-169
    • /
    • 2004
  • NDVI has been used to estimate several ecological variables including leaf area index (LAI). Global MODIS LAI data are partially produced by empirical model that is based on the assumption of high correlation between NDVI and LAI. This study attempts to evaluate the MODIS empirical model by comparing with the result obtained from field LAI measurement and Landsat ETM+ reflectance. MODIS LAI product and ancillary data were analyzed over a small forest watershed near the Seoul metropolitan area. The relationship between NDVI of ETM+ and field measured LAI did not correspond to MODIS LAI estimation. Since the study area is mostly covered by very dense and fully closed forest, the correlation between NDVI and LAI might not be high. Although MODIS LAI product has great potential for global environment studies, it needs to be cautious to use them in regional and local area in particular for the forest of dense canopy situation.

  • PDF

A STUDY ON THE PARAMETER ESTIMATION OF SNYDER-TYPE SYNTHETIC UNIT-HYDROGRAPH DEVELOPMENT IN KUM RIVER BASIN

  • Jeong, Sang-man;Park, Seok-Chae;Lee, Joo-Heon
    • Water Engineering Research
    • /
    • v.2 no.4
    • /
    • pp.219-229
    • /
    • 2001
  • Synthetic unit hydrograph equations for rainfall run-off characteristics analysis and estimation of design flood have long and quite frequently been presented, the Snyder and SCS synthetic unit hydrograph. The major inputs to the Snyder and SCS synthetic unit hydrograph are lag time and peak coefficient. In this study, the methods for estimating lag time and peak coefficient for small watersheds proposed by Zhao and McEnroe(1999) were applied to the Kum river basin in Korea. We investigated lag times of relatively small watersheds in the Kum river basin in Korea. For this investigation the recent rainfall and stream flow data for 10 relatively small watersheds with drainage areas ranging from 134 to 902 square kilometers were gathered and used. 250 flood flow events were identified along the way, and the lag time for the flood events was determined by using the rainfall and stream flow data. Lag time is closely related with the basin characteristics of a given drainage area such as channel length, channel slope, and drainage area. A regression analysis was conducted to relate lag time to the watershed characteristics. The resulting regression model is as shown below: ※ see full text (equations) In the model, Tlag is the lag time in hours, Lc is the length of the main river in kilometers and Se is the equivalent channel slope of the main channel. The coefficient of determinations (r$^2$)expressed in the regression equation is 0.846. The peak coefficient is not correlated significantly with any of the watershed characteristics. We recommend a peak coefficient of 0.60 as input to the Snyder unit-hydrograph model for the ungauged Kum river watersheds

  • PDF

The Limit of Magnetic Helicity Estimation by a Footpoint Tracking Method during a Flux Emergence

  • Choe, Gwang Son;Yi, Sibaek;Jang, Minhwan;Jun, Hongdal;Song, Inhyuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.58.2-58.2
    • /
    • 2018
  • Theoretically, the magnetic helicity transport flux through the solar surface into the upper atmosphere can be estimated indefinitely precisely by magnetic field footpoint tracking if the observational resolution is infinitely fine, even with magnetic flux emergence or submergence. In reality, the temporal and spatial resolutions of observations are limited. When magnetic flux emerging or submerging, the footpoint velocity goes to infinity and the normal magnetic field vanishes at the polarity inversion line. A finite observational resolution thus generates a blackout area in helicity flux estimation near the polarity inversion line. It is questioned how much magnetic helicity is underestimated with a footpoint tracking method due to the absence of information in the blackout area. We adopt the analytical models of Gold-Hoyle and Lundquist force-free flux ropes and let them emerging from below the solar surface. The observation and the helicity integration can start at different emerging stages of the flux rope, i.e., the photospheric plane initially cuts the flux rope at different levels. We calculate the magnetic helicity of the flux rope below the photospheric level, which is eventually to emerge, except the helicity hidden in the region to be swept by the blackout area with different widths. Our calculation suggests that the error in the integrated helicity flux estimate is about half of the real value or even larger when small scale magnetic structures emerge into the solar atmosphere.

  • PDF

Enhancement of Digital Elevation Models for Improved Estimation of Small Stream Flood Inundation Mapping (DEM 개선을 통한 중소하천 홍수범람지도 정확도 향상)

  • Kim, Tae-Eun;Seo, Kang-Hyeon;Kim, Dong-Su;Kim, Seo-Jun
    • Journal of Environmental Science International
    • /
    • v.25 no.8
    • /
    • pp.1165-1176
    • /
    • 2016
  • The accuracy of digital elevation models (DEMs) is crucial for properly estimating flood inundation area. DEM pixel size is especially important when generating flood inundation maps of small streams with a channel width of less than 50 m. In Korea, DEMs with large spatial resolutions of 30 m have been widely applied to generate flood inundation maps, even for small streams. Additionally, when making river master plans, field observations of stream cross-sections, as well as reference points in the middle of the river, have not previously been used to enhance the DEM. In this study, it was graphically demonstrated that high-resolution DEMs can increase the accuracy of flood inundation mapping, especially for small streams. Also, a methodology was proposed to modify the existing low-resolution DEMs by adding additional survey reference points, including river cross-sections, and interpolating them into a high spatial resolution DEM using the inverse distance weighting method. For verification purposes, the modified DEM was applied to Han stream on Jeju Island. The modified DEM showed much better accuracy when describing morphological features near the stream. Moreover, the flood inundation maps were formulated with the original 30 m pixel DEM and the modified 0.1 m pixel DEM using HEC-RAS modeling of the actual flood event of Typhoon Nari, and then compared with the flood history map of Nari. The results clearly indicated that the modified DEM generated a similar inundation area, but a very poor estimate of inundation area was derived from the original low-resolution DEM.

Uncertainties estimation of AOGCM-based climate scenarios for impact assessment on water resources (수자원 영향평가를 위한 기후변화 시나리오의 불확실성 평가)

  • Park E-Hyung;Im Eun-Soon;Kwon Won-Tae;Lee Eun-Jeong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.138-142
    • /
    • 2005
  • The change of precipitation and temperature due to the global. warming eventually caused the variation of water availability in terms of potential evapotranspiration, soil moisture, and runoff. In this reason national long-term water resource planning should be considered the effect of climate change. Study of AOGCM-based scenario to proposed the plausible future states of the climate system has become increasingly important for hydrological impact assessment. Future climate changes over East Asia are projected from the coupled atmosphere-ocean general circulation model (AOGCM) simulations based on Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 and B2 scenarios using multi-model ensembles (MMEs) method (Min et al. 2004). MME method is used to reduce the uncertainty of individual models. However, the uncertainty increases are larger over the small area than the large area. It is demonstrated that the temperature increases is larger over continental area than oceanic area in the 21st century.

  • PDF