• Title/Summary/Keyword: small water system

Search Result 1,317, Processing Time 0.026 seconds

A Study on the Water Absorption Diagnosis Method through Capacitance Measurement for Generator Stator Windings (발전기 고정자 권선의 정전용량 측정을 통한 흡습 진단 방법에 관한 연구)

  • Kim, Hee-Soo;Bae, Yong-Chae;Kee, Chang-Doo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.11 s.188
    • /
    • pp.50-57
    • /
    • 2006
  • The water leak in water-cooled generator stator windings can generate the serious accidents such as insulation breakdown and it brings a generator to the unexpected sudden outage. Accordingly, it is important to diagnose the water absorption of them for the effective operation of power plant. Especially, the capacitance value which is measured for diagnosis is very small so the special diagnosis methods like stochastic theory are needed. KEPRI developed the water absorption test equipment and diagnosis technology for them. The developed diagnosis technology is applied to the real system and the results of water absorption test for stator windings are agreed to them of water leak test.

Automatic control problems of VVVF converter-based variable-frequency type air (VVVF기를 기초한 가변식기압급수설비의 자동제어 문제)

  • 박용규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.468-468
    • /
    • 1991
  • The variable-frequency type water supply equipment, which adopts the variable-voltage and variable-frequency converter(VVVF converter) to govern automatically the rotating speed of a pump, can save 15-20% of power, as compared with a throttle-controlled pump device or an airpressurized water supply equipment, and is finding a wide application. However, it still has some disadvantages : greater pressure fluctuations during switching over the pump and prolonged low-effeciency running of the pump in the case of small consumption of water. Therefore, it is difficult to apply the equipment to the fire water supply system where the water should not be put into use unless a fire takes place, and the water pressure in pipelines should permanently remain constant. This paper introduces the automatic regulation principle of the variable-frequency type air-pressurized water supply equipment (hereafter referred to as simply BFQS equipment) for dual purposes of daily life and fire control, which combined both technologies of speed governing by a converter and air-pressurized water supplying, then discusses some problems related to automatic control, and finally gives the experimental results of an embodiment-BPQS-100-50 water supply equipment.

  • PDF

Effect of C Factor Errors on the Analysis of Water Distribution Systems (C계수의 추정오차가 배수관망해석에 미치는 영향)

  • Hyun, In Hwan;Lee, Cheol Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.2
    • /
    • pp.23-33
    • /
    • 1999
  • This study is to investigate the effect of C factor errors on the analysis of water distribution systems. For this purpose, an artificial distribution network and a real distribution network were selected as the study networks. Results are as follows. 1. The C factor of a pipe which has small velocity didn't give significant effect on the analysis of a water distribution system. 2. The effect of decreased value of C factors give more influence on the analysis of water distribution systems than that of the increased values. 3. For the C factor calibration, errors of the residual water heads as well as those of the head losses should be considered together. 4. In the analysis of water distribution systems, changes of C factors can give influences only on the nodes which locate behind the pipe. Therefore, this characteristics should be considered in the selection of nodes for the measurement of water heads.

  • PDF

A Study on the Design Method of Cold & Hot Water Manifold System for Residential Buildings through the Piping Network Analysis (관망해석을 통한 주거용 건축물의 급수.급탕 헤더시스템 설계 방안에 관한 연구)

  • Cha, Min-Chul;Seok, Ho-Tae;Kim, Dong-Woo
    • Journal of the Korean housing association
    • /
    • v.19 no.5
    • /
    • pp.111-120
    • /
    • 2008
  • The aim of this study is to present the design methods about manifold location being installed and size and to draw out the proper piping size as comparing the fluctuation of discharge with manifold size and residence size through the piping network analysis, when using the same faucet in accordance. The findings are summarized as follows, 1) an appropriate header main body pipe diameter was deemed to be $32{\sim}50\;mm$. 2) the research presented design measures for the application of appropriate water supply inlet pipe diameters according to residential buildings with various sizes. 3) the header direct branch piping method is ideal for small and medium-sized residential complexes, and the header branching and semi header methods are deemed to be more favorable for large residential complexes. 4) this study offered design measures for appropriate header system main body pipe diameters, water supply inlet pipe diameters, header system piping methods, application methods for functional auxiliary equipment units, and header system installation spaces and location.

A study on internal flow characteristics and performance analysis of a micro hydro tubular turbine (소수력발전용 튜블러 수차의 내부유동특성 및 성능해석)

  • Lee, Seung-Yeob;Choi, Young-Do;Hwang, Young-Chul;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.606-609
    • /
    • 2009
  • Development of renewable energy is very important because of environmental problems caused by greenhouse effect. This is due to the use of fossil fuels which has serious consequences. Therefore, development of small hydropower can be a good countermeasure for the problems. The small hydropower is clean energy because the small hydropower generates few $CO_2$. Moreover, as the energy density by the small hydropower is high, it is economical for a society which wants to introduce the system. The purpose of this study is to improve the turbine performance. This study is about tubular-type hydro turbine among renewable energy that is based using the different water pressure level in pipe lines. The analysis was performed using the commercial CFD code ANSYS-CFX.

  • PDF

Numerical Modeling of the Effect of Sand Dam on Groundwater Flow

  • Yifru, Bisrat;Kim, Min-Gyu;Chang, Sun Woo;Lee, Jeongwoo;Chung, Il-Moon
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.529-540
    • /
    • 2018
  • Sand dam is a flow barrier commonly built on small or medium size sandy rivers to accumulate sand and store excess water for later use or increase the water table. The effectiveness of sand dam in increasing the water table and the amount of extractable groundwater is tested using numerical models. Two models are developed to test the hypothesis. The first model is to simulate the groundwater flow in a pseudo-natural aquifer system with the hydraulically connected river. The second model, a modified version of the first model, is constructed with a sand dam, which raises the riverbed by 2 m. In both models, the effect of groundwater abstraction is tested by varying the pumping rate. As the model results show the groundwater after the construction of the sand dam has increased significantly and the amount of extractable groundwater is also increased by many folds. Most importantly, in the second model, unlike the pseudo-natural aquifer system, the groundwater abstraction does not have a significant effect on the water table.

A Study on Specific of Ground Water Temperature Changes of the Small Scaled SCW GWHP System in Case of Heating (소규모 SCW 지중열 시스템의 난방시 지하수 온도 변화 특성에 관한 연구)

  • Yang, Seung-Jin;Lee, Won-Ho;Kim, Ju-Young;Hong, Won-Hwa;Ahn, Chang-whan
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1347-1352
    • /
    • 2008
  • The SCW ground heat pump system releases ground energy from the ground water of ground heat exchanger. In other word, ground water is used to heating through releases ground energy which oneself has. But the thermal efficiency of system is going to down because repetitive process of ground water will lost ground energy in standing column well system and if heating load is continually increase, energy of ground water may be frozen or there are no benefits to use ground energy as it owes just little energy. To solve these problems, there are need to exchange water to the ground heat exchanger then the way will be used to maintain Efficiency continually as the way of to be supplied with fresh ground water into ground heat exchanger. However, this type causes waste of ground water. Therefore it is essential to discharge water to outside timely on a heat exchanger. Therefor through a study, find out the best time to discharge water to outside and exchange water to ground heat exchanger, and propose to the DB of design of the ground heat exchanger.

  • PDF

Testing a Small Scale Aseptic System for Milk in Plastic Bottles

  • Petrus, Rodrigo Rodrigues;Faria, Jose de Assis Fonseca
    • Food Science and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.18-22
    • /
    • 2007
  • The objective of this study was to develop and assess the performance of an aseptic system for liquid milk contained in plastic bottles, from a small-scale production standpoint. Commercial sterility tests conducted on the bottled milk were utilized in our assessments of the system, via the identification and monitoring of the principal points of the process. Four 150 L batches of milk with pH values of approximately 6.7 were heat-processed at between 137 and $143^{\circ}C$ for 10 see in a plate heat exchanger, and then aseptically transferred to 500 mL high-density polyethylene (HOPE) bottles, in an ISO class 7 clean room. The aseptic condition of the bottles was achieved via 10 see of rinsing with a mixture containing 0.5% peracetic acid and 0.8% hydrogen peroxide at $30^{\circ}C$, followed by another rinse with sterile water. Of the 4 batches processed, 2 were determined to exhibit commercial sterility, on the basis of the physical-chemical and microbiological criteria adopted. It was concluded that some adjustment of the processing line was required in order to achieve full commercial sterility for all processes. The aseptic system developed and assessed in this study was demonstrated to have great potential for the processing and transferring of milk into plastic bottles, from a small-scale production standpoint.

Thermal Performance Evaluation of Solar Hot Water System according to Flow Rate Control (유량제어방식에 따른 태양열 급탕시스템의 열성능 평가)

  • Baek, Nam-Choon;Shin, U-Cheul
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.5
    • /
    • pp.140-145
    • /
    • 2011
  • In this study, the performance and behavior of solar heating system according to the system control scheme, variable flow control (proportional control) and constant flow control (on-off control) was carried out by experiment. The on-off control is used generally for solar thermal system by now. But the proportional control is used for the solar district heating system which is supplied the higher temperature of water than that of desired. The proportional control logic that pump speed is varied in an attempt to maintain a specified outlet temperature of solar heating system was developed and tested for the use widely for the small and medium solar thermal system. The results are as following. First, the proportional controller which is made here could be adopted the characteristics for setting temperature control. Second, the proportional control is better than the on-off control in the side of the performance of thermal stratification in storage tank. Third, the operating energy(electricity consumption by pump) of solar thermal system can be saved more than 60% using the proportional control comparing to the on-off control.

The Evaluation of Climate Change Impacts on the Water Scarcity of the Han River Basin in South Korea Using High Resolution RCM Data (고해상도 RCM 자료를 이용한 기후변화가 한강유역의 수자원(이수적 측면)에 미치는 영향 평가)

  • Kim, Soo-Jun;Kim, Byung-Sik;Jun, Hwan-Don;Kim, Hung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.3
    • /
    • pp.295-308
    • /
    • 2010
  • As an attempt to explore the impact of droughts which may be worse by the climate change, the change in the water balance of the Han-river basin is analyzed. To accomplish it, we suggest a procedure consisting of three successive sub-procedures: daily rainfall generation for 70 years by the RegCM3 RCM ($27{\times}27\;km$) with the A2 scenario, daily discharge simulations by SLURP using the generated daily rainfall data, and monthly water balance analysis by K-WEAP (Korean Water Evaluation and Planning System) based on the SLURP simulation. Since significant uncertainty is involved in forecasting the future water consumption and water yields, we assumed three water consumption scenarios and fifty water yields scenarios. Three water consumption scenarios are, namely, "LOW", "MEDIUM", and "HIGH" according to the expected amount of water consumption. The fifty daily discharges are obtained from the SLURP simulations during the drought period. Finally, water balance analysis is performed by K-WEAP based on 150 combinations from three water consumption scenarios and the fifty daily discharges. Analysis of water scarcity in small basins of the Han River basin showed concentration of water scarcity in some small basins. It was also found that water scarcity would increase in all small basins of the Han River basin.