• Title/Summary/Keyword: small strain

Search Result 1,178, Processing Time 0.031 seconds

The Analysis of Excavation Behavior Considering Small Strain Stiffness (미소변형율 강성을 고려한 지반굴착 해석)

  • Kim, Young-Min
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.2
    • /
    • pp.21-31
    • /
    • 2010
  • This paper describes research on the prediction of the vertical displacement of surface, horizontal displacements and bending moments in two anchored retaining wall for an excavation by a finite element program. It is very important to consider the appropriate constitutive model for the numerical analysis in excavation behavior. It is shown in this paper that the analyses of excavation considering small strain stiffness gives the more reasonable prediction of the vertical displacement of surface. and the parametric study on the small strain stiffness parameters for excavation analysis has been analysed.

  • PDF

Anisotropy in Strength and Deformation Properties of a Variety of Sands by Plane Strain Compression Tests(Part II) -Deformation Characteristics at Extremely Small Strain Level (평면변형률압축시험에 의한 각종 모래의 강도.변형특성의 이방성(II)-미소변형률에서의 변형특성 이방성)

  • 박춘식;장정욱
    • Geotechnical Engineering
    • /
    • v.14 no.4
    • /
    • pp.33-46
    • /
    • 1998
  • Anisotropy of stiffness, from extremely small strains to post-failure strains, of isotropically consolidated air-pluviated sands in plane strain compression was studied by using the newly developed instrumentation for small strain measurements. Seven types of sand of the world-wide origins were tested, which have been extensively used for research purposes. Stress-strain at the specimen boundaries. It was found that the maximum Young's modulus $E_{max}$ was irrespective of the angle $\delta$ of the $\delta_1$ direction relative to the bedding plane. However, the normalized$ E_{max}$ was varied with the types of sand. Furthermore, the dependency of the strain and stress level on the stiffness was increased as $\delta$ decreased.

  • PDF

Application of Modelling Stress-Strain Relations (Part I) -Application to Plane Strain Compression Tests- (응력-변형률 관계 정식화의 적용성(I) -평면변형률압축시험에 대한 적용성-)

  • Park, Choon-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.12
    • /
    • pp.17-25
    • /
    • 2012
  • FEM requires the stress-strain relationship equations for numerical analyses. However, most formulations for the stress-strain relationship published up to the present are not satisfactory enough to properly express all the levels from the small strain to the peak. Tatsuoka and Shibuya (1991) suggested a new single formulation applicable not only to a wide range of geo-materials from soft clay to soft rock, but also to a wide range of strain levels from $10^{-6}$ to $10^{-2}$. The plain strain compression test is carried out to seven samples of research standard sand specimens and two samples of glass beads, which have been used at world-renowned research institutes. In this study, strains of the maximum principal stress (${\sigma}_1$) and the minimum principal stress (${\sigma}_3$) were thoroughly measured from $10^{-6}$ to $10^{-2}$, and the result, applied to Tatsuoka and Shibuya's new formulation, coincided closely with the measured data of the stress-strain relationship from the small strain to the peak.

A Study on the Similitude of Material for Small-Scale Model Mix Proportion of Concrete Pavement. (콘크리트 포장 축소모델 배합의 재료적 상사성에 관한 연구)

  • 배주성;고영주;김재경;김평수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.103-110
    • /
    • 1997
  • The objective of this study is to provide the information on the small-scale model mix proportion when the behavior of prototype concrete pavement is studied through small-scale model experiments. However it is difficult to obtain a model material to simulate the prototype concrete by scaling the individual components according to the laws of similitude. In this paper, the stress-strain behavior in uniaxial compression is used as a means to correlate materials similitude between the prototype and the model concrete. Based on th results of experiments, We compared the stress-strain curves of prototype and model concrete mixes using a nondimensional basis. In order to simulate the stress-strain curves of prototype concrete, it is important that various mix as of model concrete selected properly which are varied from aggregate grading, cement-aggregate and sand-aggregate ratio.

  • PDF

Measurement of Shear Modulus at Small Strains using Cone Pressuremeter Test (Cone Pressuremeter Test를 이용한 미소변형에서 전단변형계수 측정)

  • Yi, Chang-Tok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.135-145
    • /
    • 2005
  • Geotechnical design routinely requires that in-situ strength, stiffness of the ground be determined. In the working stress conditions, the strain level in a ground experienced by existing structures and during construction is less than about 0.1%~1%. In order to analyze the deformational behavior accurately, the in-situ testing technique which provides the reliable deformational characteristics at small strains, needs to be developed. Cone pressuremeter tests were performed on the western off-shore region of korea, and analyzed using cavity expansion theory and curve fitting technique to obtain the shear modulus at small strain level of $10^{-1}%$. The value of $E_u/S_u$ ratio for the marine clay shows about 589 at the small strain. However the value of $E_u/S_u$ estimated by lab tests are much smaller values ranged from 81 to 91. It is indicated that the curve fitting technique from CPM tests results can be used to obtain the shear modulus at small strain.

Crack growth behavior of fatigue surface crack initiated from a small surface defect (작은 表面缺陷에서 發생.成長하는 表面疲勞균열의 成長特性에 관한 硏究)

  • 서창민;권오헌;이정주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.191-197
    • /
    • 1987
  • It has been well known that the fracture mechanics can be applied to large through crack growth. But the growth rate of small surface cracks initiated from a small defect under rotary bending fatigue tests can not be treated as a function of stress intensity factor range. In this paper, to investigate the growth behavior of surface small fatigue cracks in the view-point of both fracture mechanics and strength of materials, the fatigue test has been carried out on two kinds of plain carbon steels with a small surface defect. Applying the concept of the cyclic strain intensity factor range .DELTA. $K_{\epsilon}$/$_{t}$ to the analysis of small surface fatigue crack growth, it is found that the relationship between cyclic strain intensity factor range and crack growth rate shows linear relation on logarithmic coordinates regardless of defect sizes and two kinds of carbon steels.s.s.

Measurement of Tensile Properties Dependent on the Small-Scaled Specimen Dimension for Evaluation of In-Service Materials Properties (사용재 물성 평가를 위한 미소 시험편 크기에 따른 인장 특성 평가)

  • Huh, Yong-Hak;Kim, Dong-Iei;Kim, Dong-Jin;Lee, Hae-Moo;Park, Jong-Seo
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.5
    • /
    • pp.30-34
    • /
    • 2008
  • To evaluate the mechanical properties of in-service materials, tensile properties measurement using small-scaled specimen has been carried out. Tensile testing specimens with various dimensions, including standard and sub-size specimen specified in ASTM and ISO and small-scaled specimen, were prepared. Tensile strain in small-scaled specimen was measured using micro-ESPI system set up in this study. This system was used in the specimen with the parallel length of 2 mm and in subsequently measuring the strain under tensile loading. From each type of tensile specimen, stress-strain curves were determined. The dimension effect of the tensile properties was investigated comparing the tensile results obtained from standard specimens and small-scaled specimens. It was shown that the tensile strength for the small-scaled specimen is lower by 15% than those for the standard specimen.

Measurement of Deformations in Micro-Area Using High Resolution AFM Scanning Moiré Technique (고분해능 원자 현미경 스캐닝 무아레 기법을 이용한 미소 영역의 변형량 측정)

  • Park, Jin-Hyoung;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.6 s.261
    • /
    • pp.659-664
    • /
    • 2007
  • $Moire\'{e}$ interferometry is a useful technique to assess the reliability of electronic package because $Moire\'{e}$ interferometry can measure the whole-field and real-time deformations. The shear strain of a small crack site is important to the reliability assessment of electronic package. The optical limitation of $Moire\'{e}$ interferometry makes ambiguous the shear strain of a small area. An atomic force microscope (AFM) is used to measure the profile of a micro site. High resolution of AFM can apply to the $Moire\'{e}$ technique. AFM $Moire\'{e}$ technique is useful to measure the shear strain of a small area. In this research, the method to accurately measure the deformation of a small area by using AFM $Moire\'{e}$ is proposed. A phase-shifting method is applied to improve the resolution of AFM $Moire\'{e}$.

Characteristics of Sand-Rubber mixtures with Strain Level (모래-고무 혼합재의 변형율 크기에 따른 거동 특성)

  • Lee, Chang-Ho;Truong, Q. Hung;Eom, Yong-Hun;Lee, Jong-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.90-96
    • /
    • 2008
  • Engineered mixtures composed of rigid sand particles and soft rubber particles are tested to investigate their behavior with strain level. Mixtures are prepared with different volumetric sand fractions (sf) to identify response using small strain resonant column, intermediate strain oedometer, and large strain direct shear tests. The small strain shear modulus and damping ratio are determined with volumetric sand fractions. The asymmetric frequency response curve increases with decreasing sand fraction. Linear responses of shear strain and damping ratio with shear strain are observed at the mixture of sf=0.2. Vertical strain increases with decreasing sand fraction. Mixtures with $04.{\leq}sf{\leq}0.6$ show the transitional stress-deformation behavior from rubber-like to sand-like behavior. The friction angle increases with the sand fraction and no apparent peak strength is observed in mixture without sf=1.0.

  • PDF