• 제목/요약/키워드: small strain

검색결과 1,170건 처리시간 0.023초

열기계적 피로에 따른 단결정 니켈기 초내열합금의 변형 및 파괴거동 (Deformation and Failure Behavior during Thermo-Mechanical Fatigue of a Nickel-Based Single Crystal Superalloy)

  • 강정구;홍현욱;최백규;김인수;강남현;조창용
    • 대한금속재료학회지
    • /
    • 제49권2호
    • /
    • pp.112-120
    • /
    • 2011
  • The out-of-phase thermo-mechanical fatigue (OP TMF) in a <001> oriented single crystal nickel-based superalloy CMSX-4 has been studied. OP TMF life was less than a half of low cycle fatigue(LCF) life in spite of a small hysteresis loop area of OP TMF compared to that of LCF. The failure was caused by the initiation of a crack at the oxide-layered surface followed by its planar growth along the <100> ${\gamma}$ channel in both LCF and OP TMF. However, deformation twins appeared near the major crack of OP TMF. The multiple groups of parallel twin plates on {111} planes provided a preferential path for crack propagation, which caused a significant decrease in OP TMF life. Additionally, the analysis on the surface crack morphology revealed that the tensile strain at the minimum temperature of OP TMF was found to accelerate the crack propagation.

텅스텐 다공성폼 강화 Zr계 비정질 기지 복합재료의 미세조직과 기계적 성질 (Microstructure and Mechanical Properties of Amorphous Matrix Composite Reinforced with Tungsten Porous Foam)

  • 손창영;이상복;이상관;김충년;이성학
    • 대한금속재료학회지
    • /
    • 제48권2호
    • /
    • pp.109-115
    • /
    • 2010
  • In the present study, a Zr-based amorphous alloy matrix composite reinforced with tungsten porous foam was fabricated without pores or defects by liquid pressing process, and its microstructures and mechanical properties were investigated. About 69 vol.% of tungsten foam was homogeneously distributed inside the amorphous matrix, although the matrix of the composite contained a small amount of crystalline phases. The compressive test results indicate that the composite was not fractured at one time after reaching the maximum compressive strength, but showed considerable plastic strain as the compressive load was sustained by tungsten foam. The tungsten foam greatly improved the strength (2764 MPa) and ductility (39.4%) of the composite by homogeneously dispersing the stress applied to the matrix. This was because the tungsten foam and matrix were simultaneously deformed without showing anisotropic deformation due to the excellent bonding of tungsten/matrix interfaces. These findings suggest that the liquid pressing process is useful for the development of amorphous matrix composites with improved strength and ductility.

암반 발파시험을 통한 지중변위센서의 적용성 연구 (A Study on the Application of Ground Displacement Sensor by Rock Blasting Test)

  • 이승주;정우철;이응범;석송희;이강일;김용성
    • 한국지반신소재학회논문집
    • /
    • 제21권3호
    • /
    • pp.71-78
    • /
    • 2022
  • 본 연구에서는 사면 붕괴 위험을 사전에 신속히 감지하고 정확한 판단으로 예·경보를 발령할 수 있는 비교적 저렴하고 효율적인 사면 붕괴 예측 시스템을 개발하기 위하여 암반 발파시험을 통한 지중변위센서의 적용성을 고찰하였다. 발파실험에서 발파원과 가까운 곳에 위치한 센서가 발파에 따른 암반 내부 파쇄로 인해 큰 변위값을 나타내고 발파원과 떨어진 곳에 위치한 센서는 비교적 작은 변형량을 나타냈으나 계측기의 위치보다는 암반 불연속면의 분포 양상과 발파로 인한 사면 내부의 암반의 거동이 보다 더 지중변위센서에서 계측되는 변위값에 영향을 미치는 것으로 나타났다. 본 연구를 통해 유선 및 무선 type의 지중변위센서 시스템은 암반사면 거동 계측에 활용 가능한 시스템임을 확인하였으며, 사면 붕괴 예측용 조기경보 시스템 구축에 필요한 기초 자료로서 활용될 수 있을 것으로 사료된다.

이차전지 원료 해쇄용 GRINDING DISC ASS'Y 구조해석에 대한 연구 (A study on structural analysis of GRINDING DISC ASS'Y for secondary battery material decompositiom)

  • 윤동민;전용한
    • Design & Manufacturing
    • /
    • 제16권1호
    • /
    • pp.36-42
    • /
    • 2022
  • Globally, as population growth and economic development continue, resource consumption is increasing rapidly. As an alternative to electric vehicles was suggested as the environmental pollution problem emerged, the number of registered electric vehicles in Korea increased by more than 137 times compared to 2013. Secondary batteries are expected to expand into various markets such as small IT devices and electric vehicles, and the most important part of electric vehicles is the battery (secondary battery). Therefore, in this study, to analyze the stability of the CSM (Classifier Separator Mill) grinding disc that crushes secondary battery raw materials, structural analysis and vibration analysis of the 1st to 4th grinding discs and the final model were performed. The change of bending by the weight of the Grinding Disc is at least 0.065㎛ and maximum 0.075㎛, and the change by the standard gravity is judged to be very low. The strain is at least 0.00031㎛/㎛ and maximum 0.00078㎛/㎛, and even if the number of Hamer increases, the change by the weight is judged to be insignificant. When the Grinding Disc rotates at a maximum of 6000rpm, the deformation and deformation rate of the first to third models are similar, but the fourth model (Hamer 10EA) is more than three times and the final model (Hamer 12EA) is about four times. However, the maximum deformation is 28.21㎛, which is considered to be insignificant when the change is 6000rpm. Six modes of natural Frequency analysis of the 1st~4th order and final model of the grinding disc appeared to be bent or twisted.

High-throughput sequencing-based metagenomic and transcriptomic analysis of intestine in piglets infected with salmonella

  • KyeongHye, Won;Dohyun, Kim;Donghyun, Shin;Jin, Hur;Hak-Kyo, Lee;Jaeyoung, Heo;Jae-Don, Oh
    • Journal of Animal Science and Technology
    • /
    • 제64권6호
    • /
    • pp.1144-1172
    • /
    • 2022
  • Salmonella enterica serovar Typhimurium isolate HJL777 is a virulent bacterial strain in pigs. The high rate of salmonella infection are at high risk of non-typhoidal salmonella gastroenteritis development. Salmonellosis is most common in young pigs. We investigated changes in gut microbiota and biological function in piglets infected with salmonella via analysis of rectal fecal metagenome and intestinal transcriptome using 16S rRNA and RNA sequencing. We identified a decrease in Bacteroides and increase in harmful bacteria such as Spirochaetes and Proteobacteria by microbial community analysis. We predicted that reduction of Bacteroides by salmonella infection causes proliferation of salmonella and harmful bacteria that can cause an intestinal inflammatory response. Functional profiling of microbial communities in piglets with salmonella infection showed increasing lipid metabolism associated with proliferation of harmful bacteria and inflammatory responses. Transcriptome analysis identified 31 differentially expressed genes. Using gene ontology and Innate Immune Database analysis, we identified that BGN, DCN, ZFPM2 and BPI genes were involved in extracellular and immune mechanisms, specifically salmonella adhesion to host cells and inflammatory responses during infection. We confirmed alterations in gut microbiota and biological function during salmonella infection in piglets. Our findings will help prevent disease and improve productivity in the swine industry.

Three dimensional dynamic soil interaction analysis in time domain through the soft computing

  • Han, Bin;Sun, J.B.;Heidarzadeh, Milad;Jam, M.M. Nemati;Benjeddou, O.
    • Steel and Composite Structures
    • /
    • 제41권5호
    • /
    • pp.761-773
    • /
    • 2021
  • This study presents a 3D non-linear finite element (FE) assessment of dynamic soil-structure interaction (SSI). The numerical investigation has been performed on the time domain through a Finite Element (FE) system, while considering the nonlinear behavior of soil and the multi-directional nature of genuine seismic events. Later, the FE outcomes are analyzed to the recorded in-situ free-field and structural movements, emphasizing the numerical model's great result in duplicating the observed response. In this work, the soil response is simulated using an isotropic hardening elastic-plastic hysteretic model utilizing HSsmall. It is feasible to define the non-linear cycle response from small to large strain amplitudes through this model as well as for the shift in beginning stiffness with depth that happens during cyclic loading. One of the most difficult and unexpected tasks in resolving soil-structure interaction concerns is picking an appropriate ground motion predicted across an earthquake or assessing the geometrical abnormalities in the soil waves. Furthermore, an artificial neural network (ANN) has been utilized to properly forecast the non-linear behavior of soil and its multi-directional character, which demonstrated the accuracy of the ANN based on the RMSE and R2 values. The total result of this research demonstrates that complicated dynamic soil-structure interaction processes may be addressed directly by passing the significant simplifications of well-established substructure techniques.

Data-driven prediction of compressive strength of FRP-confined concrete members: An application of machine learning models

  • Berradia, Mohammed;Azab, Marc;Ahmad, Zeeshan;Accouche, Oussama;Raza, Ali;Alashker, Yasser
    • Structural Engineering and Mechanics
    • /
    • 제83권4호
    • /
    • pp.515-535
    • /
    • 2022
  • The strength models for fiber-reinforced polymer (FRP)-confined normal strength concrete (NC) cylinders available in the literature have been suggested based on small databases using limited variables of such structural members portraying less accuracy. The artificial neural network (ANN) is an advanced technique for precisely predicting the response of composite structures by considering a large number of parameters. The main objective of the present investigation is to develop an ANN model for the axial strength of FRP-confined NC cylinders using various parameters to give the highest accuracy of the predictions. To secure this aim, a large experimental database of 313 FRP-confined NC cylinders has been constructed from previous research investigations. An evaluation of 33 different empirical strength models has been performed using various statistical parameters (root mean squared error RMSE, mean absolute error MAE, and coefficient of determination R2) over the developed database. Then, a new ANN model using the Group Method of Data Handling (GMDH) has been proposed based on the experimental database that portrayed the highest performance as compared with the previous models with R2=0.92, RMSE=0.27, and MAE=0.33. Therefore, the suggested ANN model can accurately capture the axial strength of FRP-confined NC cylinders that can be used for the further analysis and design of such members in the construction industry.

Responses of high-rise building resting on piled raft to adjacent tunnel at different depths relative to piles

  • Soomro, Mukhtiar Ali;Mangi, Naeem;Memon, Aftab Hameed;Mangnejo, Dildar Ali
    • Geomechanics and Engineering
    • /
    • 제29권1호
    • /
    • pp.25-40
    • /
    • 2022
  • In this study, 3D coupled-consolidation numerical parametric study was conducted to predict the deformation mechanism of a 20 storey building sitting on (4×4) piled raft (with length of piles, Lp=30 m) to adjacent 6 m diameter (D) tunnelling in stiff clay. The influences of different tunnel locations relative to piles (i.e., zt/Lp) were investigated in this parametric study. In first case, the tunnel was excavated near the pile shafts with depth of tunnel axis (zt) of 9 m (i.e., zt/Lp). In second and third cases, tunnels were driven at zt of 30 m and 42 m (i.e., zt/Lp = 1.0 and 1.4), respectively. An advanced hypoplastic clay model (which is capable of taking small-strain stiffness in account) was adopted to capture soil behaviour. The computed results revealed that tunnelling activity adjacent to a building resting on piled raft caused significant settlement, differential settlement, lateral deflection, angular distortion in the building. In addition, substantial bending moment, shear forces and changes in axial load distribution along pile length were induced. The findings from the parametric study revealed that the building and pile responses significantly influenced by tunnel location relative to pile.

묘박중 해저 저질에 따른 파주력 특성 (Characteristic of holding power due to nature of seabed at anchor)

  • 김병엽;김광일;김민선;;이창헌
    • 수산해양기술연구
    • /
    • 제58권3호
    • /
    • pp.230-240
    • /
    • 2022
  • In general, a high tension on the anchor and chain is placed when a ship at anchor is subjected to heavy weather. Mariners have to pay attention to whether dragging anchor occurs to keep the safety of the ship at anchorage since it is difficult to maintain the stable motion of ship and it causes collisions with other ships nearby. In this paper, the ship motion against the external forces was shown to obtain the fundamental data about characteristic of holding power due to nature of seabed at anchor, so practical trials were carried out in rocky area and muddy area using a trial ship around coastal area of South Korea. In muddy seabed, holding power showed reasonable tension values depending on the distance from anchor position of continuing swing motions of a ship corresponding to wind force. Meanwhile in rocky seabed, tension values on the chain appeared very high occasionally regardless of the distance from the anchor position and seemed to exceed its holding power to be the breaking strain of the chain although weather was not in a severe condition. Therefore, some of the cables laid on the seabed were presumed to be caught in a crack on the rock. It is assumed that even a small amount of external force may cause the chain to break in a moment in rocky seabed. Additionally, wind and current forces had a somewhat contradictory effect on holding power of the ship between them.

Stability analysis of integrated SWCNT reposed on Kerr medium under longitudinal magnetic field effect Via an NL-FSDT

  • Belkacem Selmoune;Abdelwahed Semmah;Mohammed L. Bouchareb;Fouad Bourada;Abdelouahed Tounsi;Mohammed A. Al-Osta
    • Advances in materials Research
    • /
    • 제12권3호
    • /
    • pp.243-261
    • /
    • 2023
  • This study aims to analyze the mechanical buckling behavior of a single-walled carbon nanotube (SWCNT) integrated with a one-parameter elastic medium and modeled as a Kerr-type foundation under a longitudinal magnetic field. The structure is considered homogeneous and therefore modeled utilizing the nonlocal first shear deformation theory (NL-FSDT). This model targets thin and thick structures and considers the effect of the transverse shear deformation and small-scale effect. The Kerr model describes the elastic matrix, which takes into account the transverse shear strain and normal pressure. Using the nonlocal elastic theory and taking into account the Lorentz magnetic force acquired from Maxwell relations, the stability equation for buckling analysis of a simply supported SWCNT under a longitudinal magnetic field is obtained. Moreover, the mechanical buckling load behavior with respect to the impacts of the magnetic field and the elastic medium parameters considering the nonlocal parameter, the rotary inertia, and transverse shear deformation was examined and discussed. This study showed useful results that can be used for the design of nano-transistors that use the buckling properties of single-wall carbon nanotubes(CNTs) due to the creation of the magnetic field effect.