• Title/Summary/Keyword: small size robot

Search Result 72, Processing Time 0.025 seconds

Iot Based Vision and Remote Control a Compact Mobile Robot System (IoT 기반의 비전 및 원격제어 소형 이동 로봇 시스템)

  • Jeon, Yun Chae;Choi, Hyeri;Yoon, Ki-Cheol;Kim, Gwang Gi
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.2
    • /
    • pp.267-273
    • /
    • 2021
  • Recently, the small-size mobile robots with remote-control are rapidly growth which market of mobile is increased in the world. Especially, the smart-phones are widely used for interface device in the small size of a mobile robot. The research goal is control system design which is applied to miniaturization of a mobile robot using smart-phone and it can be confirmed performance for designed system. Meanwhile, the fabrication of mini-mobile robot can also be remote-control operation through the WIFI performance of a smart-phone. The smart-phone is used to remote-control for robot operation which control data transmit to robot via the WIFI network. To drive the robot, we can observe by the smart-phone screen and it can easily adjust the robot drive condition and direction by smart-phone button. Consequentially, there was no malfunction and images were printed out well. However, in drive, because of blind spot, robot was bumped into obstacle. Therefore, the additional test is necessary to sensor for blind spot which sensor can be equipment to mobile robot. In addition, the experiment with robot object recognition is needed.

Hopping Robot Using Direct-drive Method and Thermal Modeling to Analyze Motor Limitation (Direct-drive를 활용한 소형 연속 도약 로봇 및 DC모터의 열 모델을 통한 한계 분석)

  • Myeongjin Jang;Seongyo Yang;Gwang-Pil Jung
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.53-57
    • /
    • 2024
  • A hopping robot can move through a confined environment while overcoming obstacles. To create a small hopping robot, it must be able to generate a large amount of energy and release it at the same time. However, due to the small size of the robot, there is a limit to the size of the actuator that can be used, so it is mainly used to collect energy in an elastic element and release it at once. In this paper, we propose a small hopping robot with a simplified design by removing ancillary parts and enabling continuous hopping using only a small actuator based on a direct-drive method. In addition, repeated actuation over the rated voltage can cause thermal breakdown of the actuator. To check the safety of the actuator at high voltage, we perform modeling to predict the temperature of the actuator and verify the accuracy of the modeling through experiments.

A Study of Development and Real Time Control of Small Size Robot by Cable Reduction (케이블 감속을 이용한 소형 로봇의 개발과 실시간 제어에 관한 연구)

  • Hong, Jong-Sung;Lee, Jung-Wan
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.251-260
    • /
    • 2002
  • In this thesis, a three degrees of freedom robot, which is able to provide sufficient precision for various robot researches, has been developed. The cable mechanism is used as a basic transmission of robot joints. Based on an optimal design strategy, link and joint parameters are determined and then overall geometry of the robot is designed. As an architecture of robot control, real time control system using real time linux and RtiC-Lab(Real Time Controls Laboratory) is developed. This system, written in C and based on Linux O/S, includes text editor, compiler, downloader, and real time plotter running in host computer for developing control purpose. Using these hardware and software, simple PD position control is implemented, the results shows the effectiveness of the system.

  • PDF

Recognition method of small-obstacles using a camera for a mobile robot (이동로봇을 위한 카메라 1대를 이용한 소형 장애물 인식방법에 관한 연구)

  • Kim Gab-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.85-92
    • /
    • 2005
  • This paper describes the recognition method of small-obstacles using a camera for a mobile robot in indoor environment. The technique of image processing using a camera has been widely used for an automaton of industrial system, an inspection of inferior goods, a lookout of an invader, and a vision sensor of intelligent robot. Mobile robot could meet small-obstacles such as a small plastic bottle of about 0.5 l in quantity, a small box of $7{\times}7{\times}7cm^3$ in volume, and so on in its designated path, and could be disturbed by them in the locomotion of a mobile robot. So, it is necessary to research on the recognition of small-obstacles using a camera and program. In this paper, 2-D image processing algorism and method fur recognition of small-obstacles using a camera for a mobile robot in indoor environment was developed. The characteristic test of the developed program to confirm the recognition of small-obstacles was performed. It is shown that the developed program could judge the size and the position of small-obstacles accurately.

Development of Embedded Servo System for The Mobile Robot (모바일 로봇을 위한 임베디드 서보 시스템 구현)

  • Lee, Young-Seok;Lee, Sang-Hoey;Kim, Won-Bae;Lee, Seung-Ho;Kim, Soo-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2035-2036
    • /
    • 2006
  • Most industrial robot have not load control box because of robot's weight and volume. A robot is connected to its control box by cables. and then there are a lot of problem for transfer, management and operation of robot. Now a day, A lot of control module are made small size by development of electronics part technology and control technology and they are developing as embedded and loading system. For that, control module and its servo system for a mobile robot is developed. they are small size in comparison with conventional products.

  • PDF

Design and Analysis of Leg Linkage of Small-scale Insect-inspired Ground Mobile Robot (소형 곤충형 지상 이동 로봇 주행 메커니즘의 다리 기구 설계 및 분석)

  • Sojung Yim;Seongjun Lee;Sang-Min Baek;Seokhaeng Huh;Jaekwan Ryu;Kyu-Jin Cho
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.285-292
    • /
    • 2023
  • Small-scale ground mobile robots can access confined spaces where people or larger robots are unable. As the scale of the robot decreases, the relative size of the environment increases; therefore, maintaining the mobility of the small-scale robot is required. However, small-scale robots have limitations in using a large number of high-performance actuators, powerful computational devices, and a power source. Insects can effectively navigate various terrains in nature with their legged motion. Discrete contact with the ground and the foot enables creatures to traverse irregular surfaces. Inspired by the leg motion of the insect, researchers have developed small-scale robots and they implemented swing and lifting motions of the leg by designing leg linkages that can be adapted to small-scale robots. In this paper, we propose a leg linkage design for insect-inspired small-scale ground mobile robots. To use minimal actuation and reduce the control complexity, we designed a 1-DOF 3-dimensional leg linkage that can generate a proper leg trajectory using one continuous rotational input. We analyzed the kinematics of the proposed leg linkage to investigate the effect of link parameters on the foot trajectory.

Development of a Personal Riding Robot Controlled by a Smartphone Based on Android OS (안드로이드 스마트폰 제어기반의 개인용 탑승로봇 구현)

  • Kim, Yeongyun;Kim, Dong Hun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.7
    • /
    • pp.592-598
    • /
    • 2013
  • In this paper, a small, lightweight smartphone-controlled riding robot is developed. Also, in this study, a smartphone with a jog shuttle mode for consideration of user convenience is proposed to make a small, lightweight riding robot. As well, a compass sensor is used to compensate for the mechanical characteristics of motors mounted on the riding robot. The riding robot is controlled by the interface of a drag-based jog shuttle in the smartphone, instead of a mechanical controller. For a personal riding robot, if the smartphone is used as a controller instead of a handle or a pole, it reduces its size, weight, and cost to a great extent. Thus, the riding robot can be used in indoor spaces such as offices for moving or a train or bus station and an airport for scouting, or hospital for disabilities. Experimental results show that the riding robot is easily and conveniently controlled by the proposed smartphone interface based on Android.

The Method of Vertical Obstacle Negotiation Inspired from a Centipede (지네를 모방한 수직 장애물 극복방법)

  • Yoon, Byung-Ho;Chung, Tae-Il;Koh, Doo-Yeol;Kim, Soo-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.193-200
    • /
    • 2012
  • Mobility is one of the most important issues for search and rescue robots. To increase mobility for small size robot we have focused on the mechanism and algorithm inspired from centipede. In spite of small size, using many legs and flexible long body, centipede can overcome high obstacles and move in rough terrains stably. This research focused on those points and imitated their legs and body that are good for obstacle negotiation. Based on similarity of a centipede's legs and tracks, serially connected tracks are used for climbing obstacles higher than the robot's height. And a centipede perceives environments using antennae on its head instead of eyes. Inspired from that, 3 IR sensors are attached on the front, top and bottom of the first module to imitate the antenna. Using the information gotten from the sensors, the robot decides next behavior automatically. In experiments, the robot can climb up to 45 cm height vertical wall and it is 600 % of the robot's height and 58 % of the robot's length.

EXPERIMENT OF CONCRETE FLOOR FINISHING ROBOT

  • Woo, Kwang-Sik;Lee, Ho-Gil;Kim, Jin-Young;Song, Jae-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1480-1484
    • /
    • 2004
  • In this paper, a self-propulsive and small concrete floor finishing trowel robot with twin trowels is proposed. Due to the small size and omni-directional moving capability, it is adequate for small space such as apartment. By adjusting the posture of trowels, it can move in any direction without wheels. We used cheap PIC processor for the cost saving design of the modules and adopted mode processors for easy operation of control stick. For the position control of the robot, we made a motion control algorithm appealing to the stepping motor driver module and the wireless communication module between the robot and PC (or control stick). In this paper, we discuss the control problem of the floor finishing robot in order to move to the right position. By comparing experimental result with simulation, we show the validity of the robot mechanism, sensors, and the control system.

  • PDF