• Title/Summary/Keyword: small size chip

Search Result 228, Processing Time 0.025 seconds

A Study of 2.45GHz Active RF System for Real Time Location (실시간 위치추적을 위한 2.45GHz 능동형 고주파 시스템에 관한 연구)

  • Kim, Jin-Young;Jung, Young-Sub;Kang, Joon-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.3
    • /
    • pp.43-49
    • /
    • 2008
  • The Real Time Location System (RTLS) is very important in the ubiquitous society for real time tracking of men, high price assets, and logistics products. In this work, we developed an active RF system for RTLS and tested its performance. The RTLS system developed in this work was constructed of three active readers and one active tag. The small size tag developed in this work operated with a coin type battery. To make the tag smaller, we used an internal PCB antenna and a chip antenna. We tested the performance of the tag. To reduce the manufacturing cost of our RF system, we used low price RF transceiver CC2510 chip-set. The CC2510 chip-set provided RSSI(Received Signal Strength Indicator) signal which could be used to determine the distances between an active tag and three active readers.

  • PDF

Microcode based Controller for Compact CNN Accelerators Aimed at Mobile Devices (모바일 디바이스를 위한 소형 CNN 가속기의 마이크로코드 기반 컨트롤러)

  • Na, Yong-Seok;Son, Hyun-Wook;Kim, Hyung-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.3
    • /
    • pp.355-366
    • /
    • 2022
  • This paper proposes a microcode-based neural network accelerator controller for artificial intelligence accelerators that can be reconstructed using a programmable architecture and provide the advantages of low-power and ultra-small chip size. In order for the target accelerator to support various neural network models, the neural network model can be converted into microcode through microcode compiler and mounted on accelerator to control the operators of the accelerator such as datapath and memory access. While the proposed controller and accelerator can run various CNN models, in this paper, we tested them using the YOLOv2-Tiny CNN model. Using a system clock of 200 MHz, the Controller and accelerator achieved an inference time of 137.9 ms/image for VOC 2012 dataset to detect object, 99.5ms/image for mask detection dataset to detect wearing mask. When implementing an accelerator equipped with the proposed controller as a silicon chip, the gate count is 618,388, which corresponds to 65.5% reduction in chip area compared with an accelerator employing a CPU-based controller (RISC-V).

Design of a Fourth-Order Sigma-Delta Modulator Using Direct Feedback Method (직접 궤환 방식의 모델링을 이용한 4차 시그마-델타 변환기의 설계)

  • Lee, Bum-Ha;Choi, Pyung;Choi, Jun-Rim
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.6
    • /
    • pp.39-47
    • /
    • 1998
  • A fourth-order $\Sigma$-$\Delta$ modulator is designed and implemented in 0.6 $\mu\textrm{m}$ CMOS technology. The modulator is verified by introducing nonlinear factors such as DC gain and slew rate in system model that determines the transfer function in S-domain and in time-domain. Dynamic range is more than 110 dB and the peak SM is 102.6 dB at a clock rate of 2.8224 MHz for voiceband signal. The structure of a ∑-$\Delta$ modulator is a modified fourth-order ∑-$\Delta$ modulator using direct feedback loop method, which improves performance and consumes less power. The transmission zero for noise is located in the first-second integrator loop, which reduces entire size of capacitors, reduces the active area of the chip, improves the performance, and reduces power dissipation. The system is stable because the output variation with respect to unit time is small compared with that of the third integrator. It is easy to implement because the size of the capacitor in the first integrator, and the size of the third integrator is small because we use the noise reduction technique. This paper represents a new design method by modeling that conceptually decides transfer function in S-domain and in Z-domain, determines the cutoff frequency of signal, maximizes signal power in each integrator, and decides optimal transmission-zero frequency for noise. The active area of the prototype chip is 5.25$\textrm{mm}^2$, and it dissipates 10 mW of power from a 5V supply.

  • PDF

2.6 GHz GaN-HEMT Power Amplifier MMIC for LTE Small-Cell Applications

  • Lim, Wonseob;Lee, Hwiseob;Kang, Hyunuk;Lee, Wooseok;Lee, Kang-Yoon;Hwang, Keum Cheol;Yang, Youngoo;Park, Cheon-Seok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.3
    • /
    • pp.339-345
    • /
    • 2016
  • This paper presents a two-stage power amplifier MMIC using a $0.4{\mu}m$ GaN-HEMT process. The two-stage structure provides high gain and compact circuit size using an integrated inter-stage matching network. The size and loss of the inter-stage matching network can be reduced by including bond wires as part of the matching network. The two-stage power amplifier MMIC was fabricated with a chip size of $2.0{\times}1.9mm^2$ and was mounted on a $4{\times}4$ QFN carrier for evaluation. Using a downlink LTE signal with a PAPR of 6.5 dB and a channel bandwidth of 10 MHz for the 2.6 GHz band, the power amplifier MMIC exhibited a gain of 30 dB, a drain efficiency of 32%, and an ACLR of -31.4 dBc at an average output power of 36 dBm. Using two power amplifier MMICs for the carrier and peaking amplifiers, a Doherty power amplifier was designed and implemented. At a 6 dB back-off output power level of 39 dBm, a gain of 24.7 dB and a drain efficiency of 43.5% were achieved.

Genetic characteristics of Korean Jeju Black cattle with high density single nucleotide polymorphisms

  • Alam, M. Zahangir;Lee, Yun-Mi;Son, Hyo-Jung;Hanna, Lauren H.;Riley, David G.;Mannen, Hideyuki;Sasazaki, Shinji;Park, Se Pill;Kim, Jong-Joo
    • Animal Bioscience
    • /
    • v.34 no.5
    • /
    • pp.789-800
    • /
    • 2021
  • Objective: Conservation and genetic improvement of cattle breeds require information about genetic diversity and population structure of the cattle. In this study, we investigated the genetic diversity and population structure of the three cattle breeds in the Korean peninsula. Methods: Jeju Black, Hanwoo, Holstein cattle in Korea, together with six foreign breeds were examined. Genetic diversity within the cattle breeds was analyzed with minor allele frequency (MAF), observed and expected heterozygosity (HO and HE), inbreeding coefficient (FIS) and past effective population size. Molecular variance and population structure between the nine breeds were analyzed using a model-based clustering method. Genetic distances between breeds were evaluated with Nei's genetic distance and Weir and Cockerham's FST. Results: Our results revealed that Jeju Black cattle had lowest level of heterozygosity (HE = 0.21) among the studied taurine breeds, and an average MAF of 0.16. The level of inbreeding was -0.076 for Jeju Black, while -0.018 to -0.118 for the other breeds. Principle component analysis and neighbor-joining tree showed a clear separation of Jeju Black cattle from other local (Hanwoo and Japanese cattle) and taurine/indicine cattle breeds in evolutionary process, and a distinct pattern of admixture of Jeju Black cattle having no clustering with other studied populations. The FST value between Jeju Black cattle and Hanwoo was 0.106, which was lowest across the pair of breeds ranging from 0.161 to 0.274, indicating some degree of genetic closeness of Jeju Black cattle with Hanwoo. The past effective population size of Jeju Black cattle was very small, i.e. 38 in 13 generation ago, whereas 209 for Hanwoo. Conclusion: This study indicates genetic uniqueness of Jeju Black cattle. However, a small effective population size of Jeju Black cattle indicates the requirement for an implementation of a sustainable breeding policy to increase the population for genetic improvement and future conservation.

The design and development of Control/Storage and TRX Module for Small Satellite Synthetic Aperture Radar Application (초소형위성 영상레이다를 위한 제어/저장 및 송수신 모듈의 설계 및 제작)

  • Lee, Juyoung;Kim, Hyunchul;Kim, Jongpil;Yu, Kyungdeok;Kim, Dongsik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.31-36
    • /
    • 2022
  • In this paper, we present the design, manufacture and test results of Backend unit for SAR(Synthetic Aperture Radar) that can be applied on a small satellite. The Backend unit for SAR was designed with a control/storage board, TRX(transmission and receiving) board and a power supply board as a single unit in consideration of the applying of a small satellite. The control/storage board uses RFSoC to generate wideband chirp signal, generate operating timings, and perform control and calculations for SAR operation. The TRX board is designed to convert the wideband chirp signal generated by the control/storage board to the operating frequency of X-band by up-converting the frequency. Since small size, light weight, and low cost are important consideration for small satellite, MIL/Industrial grade components were appropriately applied and the at the same time it was designed to ensure mission life through the radiation test, analysis and space environment tests.

Design of filters with double coupled line for PCS (이중결합선로를 이용한 PCS용 여파기의 설계)

  • 이창화;구본희김명수이상석
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.387-390
    • /
    • 1998
  • We propose comb-line filter using SIR(Stepped Impedance Resonator) with two transmission line. The coupling structure of the filter is double coupled line where two coupled lines are linked with cascade. We find out the inverter function of the filter. using even and odd mode impedance. The merits of the filter are that first, we can design transmission zero point at any frequency that we wanted without using lumped elements : chip capacitors and inductors. Second, we can design small size filters. To validate the inverter function of the filter with double coupled line we designed and fabricated two-pole band pass filter with the proposed filter structure.

  • PDF

Compact Metamaterial-Based Tunable Zeroth-Order Resonant Antenna with Chip Variable Capacitor

  • Jung, Youn-Kwon;Lee, Bomson
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.3
    • /
    • pp.189-191
    • /
    • 2013
  • This letter presents a compact metamaterial-based tunable zeroth-order resonant antenna. It is based on the double-negative unit cell with a function of tunable inductance realized by a varactor and impedance convertor in the shunt branch. The resonant frequency of the designed antenna ranges from 2.31 to 3.08 GHz, depending on the capacitance of the used varactor. Its size is very compact ($0.05{\lambda}_0{\times}0.2{\lambda}_0$) with a relatively wide tunable range of 29.1%. The impedance bandwidth of the antenna is from 20 to 50 MHz for the resonant center frequency. The measured maximum total realized gain is from -0.68 dBi (2.43 GHz) to 1.69 dBi (2.97 GHz). The EM-simulated and measured results are in good agreement.

Laser Drilling of High-Density Through Glass Vias (TGVs) for 2.5D and 3D Packaging

  • Delmdahl, Ralph;Paetzel, Rainer
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.2
    • /
    • pp.53-57
    • /
    • 2014
  • Thin glass (< 100 microns) is a promising material from which advanced interposers for high density electrical interconnects for 2.5D chip packaging can be produced. But thin glass is extremely brittle, so mechanical micromachining to create through glass vias (TGVs) is particularly challenging. In this article we show how laser processing using deep UV excimer lasers at a wavelength of 193 nm provides a viable solution capable of drilling dense patterns of TGVs with high hole counts. Based on mask illumination, this method supports parallel drilling of up over 1,000 through vias in 30 to $100{\mu}m$ thin glass sheets. (We also briefly discuss that ultrafast lasers are an excellent alternative for laser drilling of TGVs at lower pattern densities.) We present data showing that this process can deliver the requisite hole quality and can readily achieve future-proof TGV diameters as small $10{\mu}m$ together with a corresponding reduction in pitch size.

Implementation of four-subject four-channel optical telemetry system with enforced synchronization (강제 동기식 4생체 4채널 광펠레미트리시스템 구현)

  • ;;;M.Ishida
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.7
    • /
    • pp.40-47
    • /
    • 1998
  • This paper presents the physiological signal processing CMOS one chip for transmitting human bodys small electrical signals such as electrocardiogram(EKG) or electromyogram(EMG) and the external system for receiving signals was implemented by the commercial ICs. For simultaneous four-subject four-channel telemetry, a new enfored synchronization techniqeu using infrared bi-directional communication has been proposed. The telemeter IC with the size of 5.1*5.1mm$^{2}$ has the following functions: receiving of command signal, initialization of internal state of all functional blocks, decoding of subject-selection signal, time multiplexing of 4-channel modulated physiological signals, transmitting of telemetry signal to external system and auto power down control. The newly designed synchronized oscillator with low supply voltage dependence in the telemeter IC operates at a supply voltage from 4.6~6.0V and the nonlinearity error of PIM modulator was less than 1.2%F.S(full scale). The power saving block operates at the period of 2.5ms even if the telemetry IC does not receive command signal from external system for a constant time.

  • PDF