• Title/Summary/Keyword: small signal stability

Search Result 197, Processing Time 0.028 seconds

Small-Signal Stability Analysis of Solar Array Hardware Simulators (태양광 하드웨어 시뮬레이터의 소신호 안정도 분석)

  • Wellawatta, Thusitha Randima;Choi, Sung-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.200-201
    • /
    • 2019
  • Due to uncontrollability and non-repeatability of natural irradiation and temperature, the solar array simulator (SAS) is required to conduct the MPPT power processing experiments precisely. However, the nonlinearity of PV curve characteristic is a crucial task for the control of SAS. In the literature, this issue is addressed by many authors and various methods are proposed. However, stability analysis of SAS is not enough to evaluate the control performance. In this paper, the limitations of conventional SAS are studied according to the small signal model. By using the proposed approach, the performance of two different control method for SAS system are analyzed and compared.

  • PDF

Effect of Load Characteristics in Small-Signal Stability Analysis in Multimachine Power Systems (다기계통의 미소신호안정도해석시 부하특성의 영향)

  • Kwon, Sae-Hyuk;Rho, Kyu-Min;Jang, Kil-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.189-191
    • /
    • 1993
  • A systematic procedure for the elements of system matrix in multimachine systems with loads is suggested for the small-signal stability studies. Synchronous machines are represented by either a two-axis model or classical model. The interrelationship of submatrices of system matrix is investigated. Once elements of one submatrix are determined, they can be used to calculate the elements of the other submatrix. It is illustrated for three machine and nine bus multimachine systems with constant impedance loads, constant MVA load, constant current and power factors.

  • PDF

An Analysis of ZVS Phase-Shift Full-Bridge Converter's Small Signal Model according to Digital Sampling Method (ZVS 위상천이 풀브릿지 컨버터의 디지털 샘플링 기법에 따른 소신호 모델 분석)

  • Kim, Jeong-Woo;Cho, Younghoon;Choe, Gyu-Ha
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.2
    • /
    • pp.167-174
    • /
    • 2015
  • This study describes how digital time delay deteriorates control performance in zero voltage switching (ZVS) phase-shifted full bridge (PSFB) converter. The small-signal model of the ZVS PSFB converter is derived from the buck-converter small-signal model. Digital time delay effects have been considered according to the digital sampling methods. The analysis verifies that digital time delays reduce the stability margin of the converter, and the double sampling technique exhibits better performance than the single sampling technique. Both simulation and experimental results based on 250 W ZVS PSFB confirm the validity of the analyses performed in the study.

Small Signal Modeling Analysis and Experimental Verification of LLC Resonant Converter (LLC 공진형 컨버터의 소신호 모델링 분석 및 실험적 검증)

  • Kim, Jinwoo;Lee, Taeyoung;Cho, Younghoon;Choe, Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.365-366
    • /
    • 2017
  • LLC resonant DC-DC converter is widely used in many kinds of applications such as battery energy storage systems, wireless power transfer and high voltage power supply. It is because of characteristics like high efficiency, power density, isolation, wide power level and stability enhancement at high switching frequency. Small signal modeling helps to design controller of the converter by approximating the behavior of nonlinear system with linear state equations. This paper presents comparison between small signal modeling analysis and experimental results of LLC resonant converter.

  • PDF

Modeling and Feedback Control of LLC Resonant Converters at High Switching Frequency

  • Park, Hwa-Pyeong;Jung, Jee-Hoon
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.849-860
    • /
    • 2016
  • The high-switching-frequency operation of power converters can achieve high power density through size reduction of passive components, such as capacitors, inductors, and transformers. However, a small-output capacitor that has small capacitance and low effective series resistance changes the small-signal model of the converter power stage. Such a capacitor can make the converter unstable by increasing the crossover frequency in the transfer function of the small-signal model. In this paper, the design and implementation of a high-frequency LLC resonant converter are presented to verify the power density enhancement achieved by decreasing the size of passive components. The effect of small output capacitance is analyzed for stability by using a proper small-signal model of the LLC resonant converter. Finally, proper design methods of a feedback compensator are proposed to obtain a sufficient phase margin in the Bode plot of the loop gain of the converter for stable operation at 500 kHz switching frequency. A theoretical approach using MATLAB, a simulation approach using PSIM, and experimental results are presented to show the validity of the proposed analysis and design methods with 100 and 500 kHz prototype converters.

A Study on the Stability and Design of Compensator for Bounded Control Input Signal (제한된 제어 입력 신호의 보상을 위한 보상기 설계와 안정도에 대한 연구)

  • 손동설;엄기환;박장환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.10
    • /
    • pp.1413-1421
    • /
    • 1993
  • It is possible to weaken the undesirable effect of a bounded control input signal to the plant and done by setting up an additional correction loop which compensates for the suppresed portion of the control input signal. The design and analysys of stability of state controller is used by the Kalman-Szego-Lemma and as the result of this method is made possible to take advantage of the control input to the plant even for small error signals.

  • PDF

Discrete-time learning control for robotic manipulators

  • Suzuki, Tatsuya;Yasue, Masanori;Okuma, Shigeru;Uchikawa, Yoshiki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.1069-1074
    • /
    • 1989
  • A discrete-time learning control for robotic manipulators is studied using its pulse transfer function. Firstly, discrete-time learning stability condition which is applicable to single-input two-outputs systems is derived. Secondly, stability of learning algorithm with position signal is studied. In this case, when sampling period is small, the algorithm is not stable because of an unstable zero of the system. Thirdly, stability of algorithm with position and velocity signals is studied. In this case, we can stabilize the learning control system which is unstable in learning with only position signal. Finally, simulation results on the trajectory control of robotic manipulators using the discrete-time learning control are shown. This simulation results agree well with the analytical ones.

  • PDF

DESIGN OF DELAY-TOLERANT CONTROLLER FOR REMOTE CONTROL OF NUCLEAR REACTOR POWER

  • Lee, Yoon-Joon;Na, Man-Gyun
    • Nuclear Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.71-78
    • /
    • 2009
  • One of main concepts involved in regional small nuclear reactors is unmanned remote control. Internet-based virtual private networks provide environments for the remote monitoring and control of geographically-dispersed systems, and with the advances in communication technologies, the potential of networks for real time control and automation becomes enormous. However, networked control has some problems. The most critical is delay in signal transmission, which degrades system stability and performance. Therefore, a networked control system should be designed to account for delay. This paper proposes some design approaches for a delay-tolerant system that can guarantee predetermined stability margins and performance. To accomplish this, the reactor plant is modeled with consideration of uncertainties. With this model, three kinds of controllers are developed using different methods. The designed systems are compared with respect to stability and performance, and a second-order controller designed using the table lookup method was found to give the most satisfactory results.

Evaluation for Surfriding/Broaching of the IMO Second Generation Intact Stability (IMO 2세대 비손상 복원성에 의한 서프라이딩/브로칭 평가)

  • Yong Duck Kang;Sangmok Lee;Daehyeon Kim;Byungyoung Moon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.25 no.2
    • /
    • pp.86-93
    • /
    • 2024
  • This study evaluates the stability of a 4.99-ton small coastal fishing boat using data interpreted according to the second-generation intact stability criteria of the International Maritime Organization (IMO). The focus is on the ship's behavior under surfriding/broaching conditions during sea navigation, ensuring compliance with international standards. The data processing procedures presented apply stricter criteria than the first-generation intact stability standards to assess the ship's intact stability in waves. However, if the vessel deviates from its standard condition, a separate intact stability assessment based on actual loading conditions is necessary. The surfriding/broaching data processing procedures utilized a program developed by the Shipbuilding and Ocean Equipment Research Center at Kunsan National University. The results were analyzed and compared in detail according to the conditions, parameters, and criteria used for the calculations. Additionally, the study presents the results of Level 1 and Level 2 assessments according to IMO regulations, providing a parametric analysis of the small coastal fishing boat's stability. This allows for the evaluation of intact stability in hydrodynamic motion scenarios.tract.

UPFC Control for Power System Damping Reduction (계통동요 제어를 위한 UPFC제어기)

  • Yoon, Jong-Su;Yoon, Yong-Beum;Moon, Gun-Woo;Yoon, Seok-Ho;Choo, Jin-Boo
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.256-258
    • /
    • 1998
  • This paper presents a control system design for the UPFC of FACTS devices by optimal control scheme to enhance small-signal stability in the Power system. The feature of this UPFC controller is coordinated with generator exciter controller(AVR, PSS) to improve the total Power system stability and performance.

  • PDF