• Title/Summary/Keyword: small molecular enhancer

Search Result 12, Processing Time 0.033 seconds

Enhanced Production of hCTLA4Ig by Adding Sodium Butyrate and Sodium Pyruvate (Sodium butyrate와 sodium pyruvate 첨가에 의한 hCTLA4Ig 생산성 증대)

  • Yoo, Mi-Hee;Kim, Soo-Jin;Kwon, Jun-Young;Nam, Hyung-Jin;Kim, Dong-Il
    • KSBB Journal
    • /
    • v.26 no.5
    • /
    • pp.386-392
    • /
    • 2011
  • Human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig), an immunosuppressive agent, was expressed in transgenic rice cells using RAmy3D promoter and RAmy1A signal peptide for the inducible production and secretion into culture media by sugar depletion. In this study, sodium butyrate was used as a small molecular enhancer (SME) to enhance the production of hCTLA4Ig in transgenic rice cell suspension cultures. When 1 mM sodium butyrate was added in sugar-free media, relative viability was not reduced, while the productivity was improved 1.3-fold. In addition, by supplementing 87 mM sodium pyruvate as an alternative energy source during the production phase, death rate of the cells was decreased. When sodium pyruvate was not added, most cells became dead at day 6. However, by adding sodium pyruvate, 18% of viability can be maintained until day 10 and the production of hCTLA4Ig was enhanced 1.4-fold. When the combination of sodium pyruvate and sodium butyrate at optimum concentrations was added, the highest viability and hCTLA4Ig production could be obtained. The highest level of hCTLA4Ig reached up to 35 mg/L at day 10.

Targeting Super-Enhancers for Disease Treatment and Diagnosis

  • Shin, Ha Youn
    • Molecules and Cells
    • /
    • v.41 no.6
    • /
    • pp.506-514
    • /
    • 2018
  • The transcriptional regulation of genes determines the fate of animal cell differentiation and subsequent organ development. With the recent progress in genome-wide technologies, the genomic landscapes of enhancers have been broadly explored in mammalian genomes, which led to the discovery of novel specific subsets of enhancers, termed super-enhancers. Super-enhancers are large clusters of enhancers covering the long region of regulatory DNA and are densely occupied by transcription factors, active histone marks, and co-activators. Accumulating evidence points to the critical role that super-enhancers play in cell type-specific development and differentiation, as well as in the development of various diseases. Here, I provide a comprehensive description of the optimal approach for identifying functional units of super-enhancers and their unique chromatin features in normal development and in diseases, including cancers. I also review the recent updated knowledge on novel approaches of targeting super-enhancers for the treatment of specific diseases, such as small-molecule inhibitors and potential gene therapy. This review will provide perspectives on using super-enhancers as biomarkers to develop novel disease diagnostic tools and establish new directions in clinical therapeutic strategies.

Quercetin Down-regulates IL-6/STAT-3 Signals to Induce Mitochondrial-mediated Apoptosis in a Non-small-cell Lung-cancer Cell Line, A549

  • Mukherjee, Avinaba;Khuda-Bukhsh, Anisur Rahman
    • Journal of Pharmacopuncture
    • /
    • v.18 no.1
    • /
    • pp.19-26
    • /
    • 2015
  • Objectives: Quercetin, a flavonoid compound, has been reported to induce apoptosis in cancer cells, but its anti-inflammatory effects, which are also closely linked with apoptosis, if any, on non-small-cell lung cancer (NSCLC) have not so far been critically examined. In this study, we tried to determine if quercetin had any demonstrable anti-inflammatory potential, which also could significantly contribute to inducing apoptosis in a NSCLC cell line, A549. Methods: In this context, several assays, including cytotoxicity, flow cytometry and fluorimetry, were done. Gene expression was analyzed by using a western blot analysis. Results: Results revealed that quercetin could induce apoptosis in A549 cells through mitochondrial depolarization by causing an imbalance in B-cell lymphoma 2/Bcl2 Antagonist X (Bcl2/Bax) ratio and by down-regulating the interleukine-6/signal transducer and activator of transcription 3 (IL-6/STAT3) signaling pathway. An analysis of the data revealed that quercetin could block nuclear factor kappa-light-chain-enhancer of activated B cells (NF-${\kappa}B$) activity at early hours, which might cause a down-regulation of the IL-6 titer, and the IL-6 expression, in turn, could inhibit p-STAT3 expression. Down-regulation of both the STAT3 and the NF-${\kappa}B$ expressions might, therefore, cause down-regulation of Bcl2 activity because both are major upstream effectors of Bcl2. Alteration in Bcl2 responses might result in an imbalance in the Bcl2/Bax ratio, which could ultimately bring about mitochondria mediated apoptosis in A549 cells. Conclusion: Overall, the finding of this study indicates that a quercetin induced anti-inflammatory pathway in A549 cells appeared to make a significant contribution towards induction of apoptosis in NSCLC and, thus, may have a therapeutic use such as a strong apoptosis inducer in cancer cells.

Therapeutic implication of autophagy in neurodegenerative diseases

  • Rahman, Md. Ataur;Rhim, Hyewhon
    • BMB Reports
    • /
    • v.50 no.7
    • /
    • pp.345-354
    • /
    • 2017
  • Autophagy, a catabolic process necessary for the maintenance of intracellular homeostasis, has recently been the focus of numerous human diseases and conditions, such as aging, cancer, development, immunity, longevity, and neurodegeneration. However, the continued presence of autophagy is essential for cell survival and dysfunctional autophagy is thought to speed up the progression of neurodegeneration. The actual molecular mechanism behind the progression of dysfunctional autophagy is not yet fully understood. Emerging evidence suggests that basal autophagy is necessary for the removal of misfolded, aggregated proteins and damaged cellular organelles through lysosomal mediated degradation. Physiologically, neurodegenerative disorders are related to the accumulation of amyloid ${\beta}$ peptide and ${\alpha}-synuclein$ protein aggregation, as seen in patients with Alzheimer's disease and Parkinson's disease, respectively. Even though autophagy could impact several facets of human biology and disease, it generally functions as a clearance for toxic proteins in the brain, which contributes novel insight into the pathophysiological understanding of neurodegenerative disorders. In particular, several studies demonstrate that natural compounds or small molecule autophagy enhancer stimuli are essential in the clearance of amyloid ${\beta}$ and ${\alpha}-synuclein$ deposits. Therefore, this review briefly deliberates on the recent implications of autophagy in neurodegenerative disorder control, and emphasizes the opportunities and potential therapeutic application of applied autophagy.

Expressional Regulation of Replication Factor C in Adipocyte Differentiation (지방세포분화에서의 replication factor C 단백질의 발현조절)

  • Cho, Hyun-Kook;Kim, Hye-Young;Yu, Hyun-Jeong;Cheong, Jae-Hun
    • Journal of Life Science
    • /
    • v.21 no.2
    • /
    • pp.202-210
    • /
    • 2011
  • Adipocyte differentiation is an ordered multistep process requiring the sequential activation of several groups of adipogenic transcription factors, including CCAAT/enhancer-binding protein-$\alpha$ and peroxisome proliferator-activated receptor-$\gamma$, and coactivators. In previous reports, we identified that replication factor C 140 (RFC140) protein played a critical role in regulating adipocyte differentiation as a coactivator. Here, we show expressional regulation of RFC140 and small RFC subunit, RFC38, following characterization of gene promoter of RFC140 and RFC38. In addition, RFC140 increases PPAR$\gamma$-mediated gene activation, resulting from direct protein-protein interaction of RFC140 and PPAR$\gamma$. Taken together, these findings demonstrate that the regulated expression of RFC140 and RFC38 by specific adipocyte transcription factors is required for the adipocyte differentiation process.

Effects of different target sites on antisense RNA-mediated regulation of gene expression

  • Park, Hongmarn;Yoon, Yeongseong;Suk, Shinae;Lee, Ji Young;Lee, Younghoon
    • BMB Reports
    • /
    • v.47 no.11
    • /
    • pp.619-624
    • /
    • 2014
  • Antisense RNA is a type of noncoding RNA (ncRNA) that binds to complementary mRNA sequences and induces gene repression by inhibiting translation or degrading mRNA. Recently, several small ncRNAs (sRNAs) have been identified in Escherichia coli that act as antisense RNA mainly via base pairing with mRNA. The base pairing predominantly leads to gene repression, and in some cases, gene activation. In the current study, we examined how the location of target sites affects sRNA-mediated gene regulation. An efficient antisense RNA expression system was developed, and the effects of antisense RNAs on various target sites in a model mRNA were examined. The target sites of antisense RNAs suppressing gene expression were identified, not only in the translation initiation region (TIR) of mRNA, but also at the junction between the coding region and 3' untranslated region. Surprisingly, an antisense RNA recognizing the upstream region of TIR enhanced gene expression through increasing mRNA stability.

Egr-1 regulates the transcription of the BRCA1 gene by etoposide

  • Shin, Soon Young;Kim, Chang Gun;Lee, Young Han
    • BMB Reports
    • /
    • v.46 no.2
    • /
    • pp.92-96
    • /
    • 2013
  • The breast cancer susceptibility gene BRCA1 encodes a nuclear protein, which functions as a tumor suppressor and is involved in gene transcription and DNA repair processes. Many families with inherited breast and ovarian cancers have mutations in the BRCA1 gene. However, only a few studies have reported on the mechanism underlying the regulation of BRCA1 expression in humans. In this study, we investigated the transcriptional regulation of BRCA1 in HeLa cells treated with etoposide. We found that three Egr-1-binding sequences (EBSs) were located at -1031, -1005, and -385 within the enhancer region of the BRCA1 gene. Forced expression of Egr-1 stimulated the BRCA1 promoter activity. EMSA data showed that Egr-1 bound directly to the EBS within the BRCA1 gene. Knockdown of Egr-1 through the expression of a small hairpin RNA (shRNA) attenuated etoposide-induced BRCA1 promoter activity. We conclude that Egr-1 targets the BRCA1 gene in HeLa cells exposed to etoposide.

Generation of ints14 Knockout Zebrafish using CRISPR/Cas9 for the Study of Development and Disease Mechanisms

  • Ji Hye Jung;Sanghoon Jeon;Heabin Kim;Seung-Hyun Jung
    • Development and Reproduction
    • /
    • v.27 no.4
    • /
    • pp.205-211
    • /
    • 2023
  • INTS14/VWA9, a component of the integrator complex subunits, plays a pivotal role in regulating the fate of numerous nascent RNAs transcribed by RNA polymerase II, particularly in the biogenesis of small nuclear RNAs and enhancer RNAs. Despite its significance, a comprehensive mutation model for developmental research has been lacking. To address this gap, we aimed to investigate the expression patterns of INTS14 during zebrafish embryonic development. We generated ints14 mutant strains using the CRISPR/Cas9 system. We validated the gRNA activity by co-injecting Cas9 protein and a single guide RNA into fertilized zebrafish eggs, subsequently confirming the presence of a 6- or 9-bp deletion in the ints14 gene. In addition, we examined the two mutant alleles through PCR analysis, T7E1 assay, TA-cloning, and sequencing. For the first time, we used the CRISPR/Cas9 system to create a model in which some sequences of the ints14 gene were removed. This breakthrough opens new avenues for in-depth exploration of the role of ints14 in animal diseases. The mutant strains generated in this study can provide a valuable resource for further investigations into the specific consequences of ints14 gene deletion during zebrafish development. This research establishes a foundation for future studies exploring the molecular mechanisms underlying the functions of ints14, its interactions with other genes or proteins, and its broader implications for biological processes.

TFAP2C Promotes Cell Proliferation by Upregulating CDC20 and TRIB3 in Non-small Cell Lung Cancer Cells (비소세포폐암 발달 과정에서 TFAP2C에 의해 발현되는 CDC20과 TRIB3의 원암유전자 기능에 관한 연구)

  • Kim, Dain;Do, Hyunhee;Kang, JiHoon;Youn, BuHyun;Kim, Wanyeon
    • Journal of Life Science
    • /
    • v.29 no.6
    • /
    • pp.645-652
    • /
    • 2019
  • Non-small cell lung cancer (NSCLC) has the infamous distinction of being the leading cause of global cancer-related death over the past decade, and novel molecular targets are urgently required to change this status. We previously conducted a microarray analysis to investigate the association of transcription factor activating enhancer-binding protein 2C (TFAP2C) with NSCLC and revealed its oncogenic roles in NSCLC development. In this study, to identify new biomarkers for NSCLC, we focused on several oncogenes from the microarray analysis that are transcriptionally regulated by TFAP2C. Here, the cell division cycle 20 (CDC20) and tribbles pseudokinase 3 (TRIB3) were subsequently found as potential potent oncogenes as they are positively regulated by TFAP2C. The results showed that the mRNA and protein levels of CDC20 and TRIB3 were down-regulated in two NSCLC cell lines (NCI-H292 and NCI-H838), which were treated with TFAP2C siRNA, and that the overexpression of either CDC20 or TRIB3 was responsible for promoting cell viability in both NSCLC cell lines. In addition, apoptotic levels of NCI-H292 and NCI-H838 cells treated with TFAP2C siRNA were found to be suppressed by the overexpression of either CDC20 or TRIB3. Together, these results suggest that CDC20 and TRIB3 are positively related to NSCLC tumorigenesis and that they should be considered as potential prognostic markers for developing an NSCLC therapy.

Hsa-miR-422a Originated from Short Interspersed Nuclear Element Increases ARID5B Expression by Collaborating with NF-E2

  • Kim, Woo Ryung;Park, Eun Gyung;Lee, Hee-Eun;Park, Sang-Je;Huh, Jae-Won;Kim, Jeong Nam;Kim, Heui-Soo
    • Molecules and Cells
    • /
    • v.45 no.7
    • /
    • pp.465-478
    • /
    • 2022
  • MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate the expression of target messenger RNA (mRNA) complementary to the 3' untranslated region (UTR) at the post-transcriptional level. Hsa-miR-422a, which is commonly known as miRNA derived from transposable element (MDTE), was derived from short interspersed nuclear element (SINE). Through expression analysis, hsa-miR-422a was found to be highly expressed in both the small intestine and liver of crab-eating monkey. AT-Rich Interaction Domain 5 B (ARID5B) was selected as the target gene of hsa-miR-422a, which has two binding sites in both the exon and 3'UTR of ARID5B. To identify the interaction between hsa-miR-422a and ARID5B, a dual luciferase assay was conducted in HepG2 cell line. The luciferase activity of cells treated with the hsa-miR-422a mimic was upregulated and inversely downregulated when both the hsa-miR-422a mimic and inhibitor were administered. Nuclear factor erythroid-2 (NF-E2) was selected as the core transcription factor (TF) via feed forward loop analysis. The luciferase expression was downregulated when both the hsa-miR-422a mimic and siRNA of NF-E2 were treated, compared to the treatment of the hsa-miR-422a mimic alone. The present study suggests that hsa-miR-422a derived from SINE could bind to the exon region as well as the 3'UTR of ARID5B. Additionally, hsa-miR-422a was found to share binding sites in ARID5B with several TFs, including NF-E2. The hsa-miR-422a might thus interact with TF to regulate the expression of ARID5B, as demonstrated experimentally. Altogether, hsa-miR-422a acts as a super enhancer miRNA of ARID5B by collaborating with TF and NF-E2.