DOI QR코드

DOI QR Code

Targeting Super-Enhancers for Disease Treatment and Diagnosis

  • Shin, Ha Youn (Department of Biomedical Science and Engineering, Konkuk University)
  • Received : 2017.11.19
  • Accepted : 2018.04.12
  • Published : 2018.06.30

Abstract

The transcriptional regulation of genes determines the fate of animal cell differentiation and subsequent organ development. With the recent progress in genome-wide technologies, the genomic landscapes of enhancers have been broadly explored in mammalian genomes, which led to the discovery of novel specific subsets of enhancers, termed super-enhancers. Super-enhancers are large clusters of enhancers covering the long region of regulatory DNA and are densely occupied by transcription factors, active histone marks, and co-activators. Accumulating evidence points to the critical role that super-enhancers play in cell type-specific development and differentiation, as well as in the development of various diseases. Here, I provide a comprehensive description of the optimal approach for identifying functional units of super-enhancers and their unique chromatin features in normal development and in diseases, including cancers. I also review the recent updated knowledge on novel approaches of targeting super-enhancers for the treatment of specific diseases, such as small-molecule inhibitors and potential gene therapy. This review will provide perspectives on using super-enhancers as biomarkers to develop novel disease diagnostic tools and establish new directions in clinical therapeutic strategies.

Keywords

References

  1. Achour, M., Le Gras, S., Keime, C., Parmentier, F., Lejeune, F.X., Boutillier, A.L., Neri, C., Davidson, I., and Merienne, K. (2015). Neuronal identity genes regulated by super-enhancers are preferentially down-regulated in the striatum of Huntington's disease mice. Hum. Mol. Genet. 24, 3481-3496. https://doi.org/10.1093/hmg/ddv099
  2. Adam, R.C., Yang, H., Rockowitz, S., Larsen, S.B., Nikolova, M., Oristian, D.S., Polak, L., Kadaja, M., Asare, A., Zheng, D., et al. (2015). Pioneer factors govern super-enhancer dynamics in stem cell plasticity and lineage choice. Nature 521, 366-370. https://doi.org/10.1038/nature14289
  3. Amorim, S., Stathis, A., Gleeson, M., Iyengar, S., Magarotto, V., Leleu, X., Morschhauser, F., Karlin, L., Broussais, F., Rezai, K., et al. (2016). Bromodomain inhibitor OTX015 in patients with lymphoma or multiple myeloma: a dose-escalation, open-label, pharmacokinetic, phase 1 study. Lancet Haematol. 3, e196-204. https://doi.org/10.1016/S2352-3026(16)00021-1
  4. Banerji, J., Rusconi, S., and Schaffner, W. (1981). Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences. Cell 27, 299-308. https://doi.org/10.1016/0092-8674(81)90413-X
  5. Banerji, J., Olson, L., and Schaffner, W. (1983). A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes. Cell 33, 729-740. https://doi.org/10.1016/0092-8674(83)90015-6
  6. Carter, D., Chakalova, L., Osborne, C.S., Dai, Y.F., and Fraser, P. (2002). Long-range chromatin regulatory interactions in vivo. Nat. Genet. 32, 623-626. https://doi.org/10.1038/ng1051
  7. Cavalli, G., Hayashi, M., Jin, Y., Yorgov, D., Santorico, S.A., Holcomb, C., Rastrou, M., Erlich, H., Tengesdal, I.W., Dagna, L., et al. (2016). MHC class II super-enhancer increases surface expression of HLA-DR and HLA-DQ and affects cytokine production in autoimmune vitiligo. Proc. Natl. Acad. Sci. USA 113, 1363-1368. https://doi.org/10.1073/pnas.1523482113
  8. Chipumuro, E., Marco, E., Christensen, C.L., Kwiatkowski, N., Zhang, T., Hatheway, C.M., Abraham, B.J., Sharma, B., Yeung, C., Altabef, A., et al. (2014). CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer. Cell 159, 1126-1139. https://doi.org/10.1016/j.cell.2014.10.024
  9. Christensen, C.L., Kwiatkowski, N., Abraham, B.J., Carretero, J., Al-Shahrour, F., Zhang, T., Chipumuro, E., Herter-Sprie, G.S., Akbay, E.A., Altabef, A., et al. (2014). Targeting transcriptional addictions in small cell lung cancer with a covalent CDK7 inhibitor. Cancer Cell 26, 909-922. https://doi.org/10.1016/j.ccell.2014.10.019
  10. Dowen, J.M., Fan, Z.P., Hnisz, D., Ren, G., Abraham, B.J., Zhang, L.N., Weintraub, A.S., Schujiers, J., Lee, T.I., Zhao, K., et al. (2014). Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell 159, 374-387. https://doi.org/10.1016/j.cell.2014.09.030
  11. Drier, Y., Cotton, M.J., Williamson, K.E., Gillespie, S.M., Ryan, R.J., Kluk, M.J., Carey, C.D., Rodig, S.J., Sholl, L.M., Afrogheh, A.H., et al. (2016). An oncogenic MYB feedback loop drives alternate cell fates in adenoid cystic carcinoma. Nat. Genet. 48, 265-272. https://doi.org/10.1038/ng.3502
  12. Groschel, S., Sanders, M.A., Hoogenboezem, R., de Wit, E., Bouwman, B.A.M., Erpelinck, C., van der Velden, V.H.J., Havermans, M., Avellino, R., van Lom, K., et al. (2014). A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia. Cell 157, 369-381. https://doi.org/10.1016/j.cell.2014.02.019
  13. Hay, D., Hughes, J.R., Babbs, C., Davies, J.O.J., Graham, B.J., Hanssen, L., Kassouf, M.T., Marieke Oudelaar, A.M., Sharpe, J.A., Suciu, M.C., et al. (2016). Genetic dissection of the alpha-globin super-enhancer in vivo. Nat. Genet. 48, 895-903. https://doi.org/10.1038/ng.3605
  14. Heinz, S., Romanoski, C.E., Benner, C., and Glass, C.K. (2015). The selection and function of cell type-specific enhancers. Nat. Rev. Mol. Cell Biol. 16, 144-154. https://doi.org/10.1038/nrm3949
  15. Henssen, A., Althoff, K., Odersky, A., Beckers, A., Koche, R., Speleman, F., Schafers, S., Bell, E., Nortmeyer, M., Westermann, F., et al. (2016). Targeting MYCN-driven transcription by BETbromodomain inhibition. Clin. Cancer Res. 22, 2470-2481. https://doi.org/10.1158/1078-0432.CCR-15-1449
  16. Herz, H.M., Hu, D., and Shilatifard, A. (2014). Enhancer malfunction in cancer. Mol. Cell 53, 859-866. https://doi.org/10.1016/j.molcel.2014.02.033
  17. Hnisz, D., Abraham, B.J., Lee, T.I., Lau, A., Saint-Andre, V., Sigova, A.A., Hoke, H.A., and Young, R.A. (2013). Super-enhancers in the control of cell identity and disease. Cell 155, 934-947. https://doi.org/10.1016/j.cell.2013.09.053
  18. Huang, J., Liu, X., Li, D., Shao, Z., Cao, H., Zhang, Y., Trompouki, E., Bowman, T.V., Zon, L.I., Yuan, G.C., et al. (2016). Dynamic control of enhancer repertoires drives lineage and stage-specific transcription during hematopoiesis. Dev. Cell 36, 9-23. https://doi.org/10.1016/j.devcel.2015.12.014
  19. Jiang, Y.Y., Lin, D.C., Mayakonda, A., Hazawa, M., Ding, L.W., Chien, W.W., Xu, L., Chen, Y., Xiao, J.F., Senapedis, W., et al. (2017). Targeting super-enhancer-associated oncogenes in oesophageal squamous cell carcinoma. Gut 66, 1358-1368. https://doi.org/10.1136/gutjnl-2016-311818
  20. Jiao, W., Chen, Y., Song, H., Li, D., Mei, H., Yang, F., Fang, E., Wang, X., Huang, K., Zheng, L., et al. (2018). HPSE enhancer RNA promotes cancer progression through driving chromatin looping and regulating hnRNPU/p300/EGR1/HPSE axis. Oncogene [Epub ahead of print].
  21. Kagey, M.H., Newman, J.J., Bilodeau, S., Zhan, Y., Orlando, D.A., van Berkum, N.L., Ebmeier, C.C., Goossens, J., Rahl, P.B., Levine, S.S., et al. (2010). Mediator and cohesin connect gene expression and chromatin architecture. Nature 467, 430-435. https://doi.org/10.1038/nature09380
  22. Katerndahl, C.D.S., Heltemes-Harris, L.M., Willette, M.J.L., Henzler, C.M., Frietze, S., Yang, R., Schjerven, H., Silverstein, K.A.T., Ramsey, L.B., Hubbard, G., et al. (2017). Antagonism of B cell enhancer networks by STAT5 drives leukemia and poor patient survival. Nat Immunol 18, 694-704. https://doi.org/10.1038/ni.3716
  23. Kennedy, A.L., Vallurupalli, M., Chen, L., Crompton, B., Cowley, G., Vazquez, F., Weir, B.A., Tsherniak, A., Parasuraman, S., Kim, S., et al. (2015). Functional, chemical genomic, and super-enhancer screening identify sensitivity to cyclin D1/CDK4 pathway inhibition in Ewing sarcoma. Oncotarget 6, 30178-30193.
  24. Kim, T.K., Hemberg, M., Gray, J.M., Costa, A.M., Bear, D.M., Wu, J., Harmin, D.A., Laptewicz, M., Barbara-Haley, K., Kuersten, S., et al. (2010). Widespread transcription at neuronal activity-regulated enhancers. Nature 465, 182-187. https://doi.org/10.1038/nature09033
  25. Ko, J.Y., Oh, S., and Yoo, K.H. (2017). Functional Enhancers As Master Regulators of Tissue-Specific Gene Regulation and Cancer Development. Mol. Cells 40, 169-177.
  26. Kulaeva, O.I., Nizovtseva, E.V., Polikanov, Y.S., Ulianov, S.V. and Studitsky, V.M. (2012). Distant activation of transcription: mechanisms of enhancer action. Mol. Cell Biol. 32, 4892-4897. https://doi.org/10.1128/MCB.01127-12
  27. Kwiatkowski, N., Zhang, T., Rahl, P.B., Abraham, B.J., Reddy, J., Ficarro, S.B., Dastur, A., Amzallag, A., Ramaswamy, S., Tesar, B., et al. (2014). Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature 511, 616-620. https://doi.org/10.1038/nature13393
  28. Le Gras, S., Keime, C., Anthony, A., Lotz, C., De Longprez, L., Brouillet, E., Cassel, J.C., Boutillier, A.L. and Merienne, K. (2017). Altered enhancer transcription underlies Huntington's disease striatal transcriptional signature. Sci. Rep. 7, 42875. https://doi.org/10.1038/srep42875
  29. Lee, H.K., Willi, M., Wang, C., Yang, C.M., Smith, H.E., Liu, C., and Hennighausen, L. (2017). Functional assessment of CTCF sites at cytokine-sensing mammary enhancers using CRISPR/Cas9 gene editing in mice. Nucleic Acids Res. 45, 4606-4618. https://doi.org/10.1093/nar/gkx185
  30. Levine, M. (2010). Transcriptional enhancers in animal development and evolution. Curr. Biol. 20, R754-763. https://doi.org/10.1016/j.cub.2010.06.070
  31. Levine, M., Cattoglio, C., and Tjian, R. (2014). Looping back to leap forward: transcription enters a new era. Cell 157, 13-25. https://doi.org/10.1016/j.cell.2014.02.009
  32. Li, Y., Rivera, C.M., Ishii, H., Jin, F., Selvaraj, S., Lee, A.Y., Dixon, J.R., and Ren, B. (2014). CRISPR reveals a distal super-enhancer required for Sox2 expression in mouse embryonic stem cells. PLoS One 9, e114485. https://doi.org/10.1371/journal.pone.0114485
  33. Liang, J., Zhou, H., Gerdt, C., Tan, M., Colson, T., Kaye, K.M., Kieff, E., and Zhao, B. (2016). Epstein-Barr virus super-enhancer eRNAs are essential for MYC oncogene expression and lymphoblast proliferation. Proc. Natl. Acad. Sci. USA 113, 14121-14126. https://doi.org/10.1073/pnas.1616697113
  34. Loven, J., Hoke, H.A., Lin, C.Y., Lau, A., Orlando, D.A., Vakoc, C.R., Bradner, J.E., Lee, T.I., and Young, R.A. (2013). Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153, 320-334. https://doi.org/10.1016/j.cell.2013.03.036
  35. Mansour, M.R., Abraham, B.J., Anders, L., Berezovskaya, A., Gutierrez, A., Durbin, A.D., Etchin, J., Lawton, L., Sallan, S.E., Silverman, L.B., et al. (2014). Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science 346, 1373-1377. https://doi.org/10.1126/science.1259037
  36. Northcott, P.A., Lee, C., Zichner, T., Stutz, A.M., Erkek, S., Kawauchi, D., Shih, D.J., Hovestadt, V., Zapatka, M., Sturm, D., et al. (2014). Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. Nature 511, 428-434. https://doi.org/10.1038/nature13379
  37. Oldridge, D.A., Wood, A.C., Weichert-Leahey, N., Crimmins, I., Sussman, R., Winter, C., McDaniel, L.D., Diamond, M., Hart, L.S., Zhu, S., et al. (2015). Genetic predisposition to neuroblastoma mediated by a LMO1 super-enhancer polymorphism. Nature 528, 418-421. https://doi.org/10.1038/nature15540
  38. Ong, C.T., and Corces, V.G. (2011). Enhancer function: new insights into the regulation of tissue-specific gene expression. Nat. Rev. Genet. 12, 283-293.
  39. Ong, C.T., and Corces, V.G. (2012). Enhancers: emerging roles in cell fate specification. EMBO Rep. 13, 423-430. https://doi.org/10.1038/embor.2012.52
  40. Parker, S.C., Stitzel, M.L., Taylor, D.L., Orozco, J.M., Erdos, M.R., Akiyama, J.A., van Bueren, K.L., Chines, P.S., Narisu, N., Program, N.C.S., et al. (2013). Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants. Proc. Natl. Acad. Sci. USA 110, 17921-17926. https://doi.org/10.1073/pnas.1317023110
  41. Peeters, J.G., Vervoort, S.J., Tan, S.C., Mijnheer, G., de Roock, S., Vastert, S.J., Nieuwenhuis, E.E., van Wijk, F., Prakken, B.J., Creyghton, M.P., et al. (2015). Inhibition of super-enhancer activity in autoinflammatory site-derived T cells reduces disease-associated gene expression. Cell Rep. 12, 1986-1996. https://doi.org/10.1016/j.celrep.2015.08.046
  42. Pefanis, E., Wang, J., Rothschild, G., Lim, J., Kazadi, D., Sun, J., Federation, A., Chao, J., Elliott, O., Liu, Z.P., et al. (2015). RNA exosome-regulated long non-coding RNA transcription controls super-enhancer activity. Cell 161, 774-789. https://doi.org/10.1016/j.cell.2015.04.034
  43. Pelish, H.E., Liau, B.B., Nitulescu, II, Tangpeerachaikul, A., Poss, Z.C., Da Silva, D.H., Caruso, B.T., Arefolov, A., Fadeyi, O., Christie, A.L., et al. (2015). Mediator kinase inhibition further activates super-enhancer-associated genes in AML. Nature 526, 273-276. https://doi.org/10.1038/nature14904
  44. Pott, S. and Lieb, J.D. (2015). What are super-enhancers? Nat Genet 47, 8-12. https://doi.org/10.1038/ng.3167
  45. Sengupta, S., and George, R.E. (2017). Super-enhancer-driven transcriptional dependencies in cancer. Trends Cancer 3, 269-281. https://doi.org/10.1016/j.trecan.2017.03.006
  46. Sengupta, D., Kannan, A., Kern, M., Moreno, M.A., Vural, E., Stack, B., Jr., Suen, J.Y., Tackett, A.J. and Gao, L. (2015). Disruption of BRD4 at H3K27Ac-enriched enhancer region correlates with decreased c-Myc expression in Merkel cell carcinoma. Epigenetics 10, 460-466. https://doi.org/10.1080/15592294.2015.1034416
  47. Shi, J., Whyte, W.A., Zepeda-Mendoza, C.J., Milazzo, J.P., Shen, C., Roe, J.S., Minder, J.L., Mercan, F., Wang, E., Eckersley-Maslin, M.A., et al. (2013). Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation. Genes Dev 27, 2648-2662. https://doi.org/10.1101/gad.232710.113
  48. Shin, H.Y., Willi, M., Yoo, K.H., Zeng, X., Wang, C., Metser, G., and Hennighausen, L. (2016). Hierarchy within the mammary STAT5-driven Wap super-enhancer. Nat Genet 48, 904-911. https://doi.org/10.1038/ng.3606
  49. Shlyueva, D., Stampfel, G., and Stark, A. (2014). Transcriptional enhancers: from properties to genome-wide predictions. Nat. Rev. Genet. 15, 272-286. https://doi.org/10.1038/nrg3682
  50. Siersbaek, R., Rabiee, A., Nielsen, R., Sidoli, S., Traynor, S., Loft, A., La Cour Poulsen, L., Rogowska-Wrzesinska, A., Jensen, O.N., and Mandrup, S. (2014). Transcription factor cooperativity in early adipogenic hotspots and super-enhancers. Cell Rep. 7, 1443-1455. https://doi.org/10.1016/j.celrep.2014.04.042
  51. Tolhuis, B., Palstra, R.J., Splinter, E., Grosveld, F., and de Laat, W. (2002). Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol. Cell 10, 1453-1465. https://doi.org/10.1016/S1097-2765(02)00781-5
  52. Vahedi, G., Kanno, Y., Furumoto, Y., Jiang, K., Parker, S.C., Erdos, M.R., Davis, S.R., Roychoudhuri, R., Restifo, N.P., Gadina, M., et al. (2015). Super-enhancers delineate disease-associated regulatory nodes in T cells. Nature 520, 558-562. https://doi.org/10.1038/nature14154
  53. Walker, B.A., Wardell, C.P., Brioli, A., Boyle, E., Kaiser, M.F., Begum, D.B., Dahir, N.B., Johnson, D.C., Ross, F.M., Davies, F.E., et al. (2014). Translocations at 8q24 juxtapose MYC with genes that harbor superenhancers resulting in overexpression and poor prognosis in myeloma patients. Blood Cancer J 4, e191. https://doi.org/10.1038/bcj.2014.13
  54. Whyte, W.A., Orlando, D.A., Hnisz, D., Abraham, B.J., Lin, C.Y., Kagey, M.H., Rahl, P.B., Lee, T.I., and Young, R.A. (2013). Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307-319. https://doi.org/10.1016/j.cell.2013.03.035
  55. Willi, M., Yoo, K.H., Reinisch, F., Kuhns, T.M., Lee, H.K., Wang, C., and Hennighausen, L. (2017). Facultative CTCF sites moderate mammary super-enhancer activity and regulate juxtaposed gene in non-mammary cells. Nat. Commun. 8, 16069. https://doi.org/10.1038/ncomms16069
  56. Wong, R.W.J., Ngoc, P.C.T., Leong, W.Z., Yam, A.W.Y., Zhang, T., Asamitsu, K., Iida, S., Okamoto, T., Ueda, R., Gray, N.S., et al. (2017). Enhancer profiling identifies critical cancer genes and characterizes cell identity in adult T-cell leukemia. Blood 130, 2326-2338 https://doi.org/10.1182/blood-2017-06-792184
  57. Wyce, A., Ganji, G., Smitheman, K.N., Chung, C.W., Korenchuk, S., Bai, Y., Barbash, O., Le, B., Craggs, P.D., McCabe, M.T., et al. (2013). BET inhibition silences expression of MYCN and BCL2 and induces cytotoxicity in neuroblastoma tumor models. PLoS One 8, e72967. https://doi.org/10.1371/journal.pone.0072967
  58. Yin, J.W., and Wang, G. (2014). The Mediator complex: a master coordinator of transcription and cell lineage development. Development 141, 977-987. https://doi.org/10.1242/dev.098392
  59. Yokoyama, Y., Zhu, H., Lee, J.H., Kossenkov, A.V., Wu, S.Y., Wickramasinghe, J.M., Yin, X., Palozola, K.C., Gardini, A., Showe, L.C., et al. (2016). BET inhibitors suppress ALDH activity by targeting ALDH1A1 super-enhancer in ovarian cancer. Cancer Res 76, 6320-6330. https://doi.org/10.1158/0008-5472.CAN-16-0854
  60. Zeng, L., and Zhou, M.M. (2002). Bromodomain: an acetyl-lysine binding domain. FEBS Lett. 513, 124-128. https://doi.org/10.1016/S0014-5793(01)03309-9
  61. Zhang, X., Choi, P.S., Francis, J.M., Imielinski, M., Watanabe, H., Cherniack, A.D., and Meyerson, M. (2016). Identification of focally amplified lineage-specific super-enhancers in human epithelial cancers. Nat. Genet. 48, 176-182. https://doi.org/10.1038/ng.3470

Cited by

  1. Dissecting Tissue-Specific Super-Enhancers by Integrating Genome-Wide Analyses and CRISPR/Cas9 Genome Editing pp.1573-7039, 2018, https://doi.org/10.1007/s10911-018-9417-z
  2. Targeting Super-Enhancers as a Therapeutic Strategy for Cancer Treatment vol.10, pp.None, 2018, https://doi.org/10.3389/fphar.2019.00361
  3. Morphomechanic phenotypic variability of sarcomeric cardiomyopathies: A multifactorial polygenic perspective vol.126, pp.None, 2018, https://doi.org/10.1016/j.yjmcc.2018.10.024
  4. The structural and functional roles of CTCF in the regulation of cell type-specific and human disease-associated super-enhancers vol.41, pp.3, 2019, https://doi.org/10.1007/s13258-018-0768-z
  5. Dysregulated Transcriptional Control in Prostate Cancer vol.20, pp.12, 2019, https://doi.org/10.3390/ijms20122883
  6. In Silico Analysis of Gene Expression Change Associated with Copy Number of Enhancers in Pancreatic Adenocarcinoma vol.20, pp.14, 2019, https://doi.org/10.3390/ijms20143582
  7. Bromodomains: a new target class for drug development vol.18, pp.8, 2019, https://doi.org/10.1038/s41573-019-0030-7
  8. Targeting transcriptional machinery to inhibit enhancer-driven gene expression in heart failure vol.24, pp.5, 2018, https://doi.org/10.1007/s10741-019-09792-3
  9. Ikaros tumor suppressor function includes induction of active enhancers and super-enhancers along with pioneering activity vol.33, pp.11, 2019, https://doi.org/10.1038/s41375-019-0474-0
  10. Investigating the role of super-enhancer RNAs underlying embryonic stem cell differentiation vol.20, pp.suppl10, 2018, https://doi.org/10.1186/s12864-019-6293-x
  11. Early epigenomic and transcriptional changes reveal Elk-1 transcription factor as a therapeutic target in Huntington’s disease vol.116, pp.49, 2019, https://doi.org/10.1073/pnas.1908113116
  12. Super-enhancers in transcriptional regulation and genome organization vol.47, pp.22, 2019, https://doi.org/10.1093/nar/gkz1038
  13. Functions and Clinical Significance of Super-Enhancers in Bone-Related Diseases vol.8, pp.None, 2018, https://doi.org/10.3389/fcell.2020.00534
  14. The Klf6 Super-enhancer Determines Klf6 Sensitivity to BRD4 Inhibitors in Human Hepatoma (HepG2) Cells vol.9, pp.None, 2020, https://doi.org/10.2174/2211550109999200802154246
  15. Alternatively Constructed Estrogen Receptor Alpha-Driven Super-Enhancers Result in Similar Gene Expression in Breast and Endometrial Cell Lines vol.21, pp.5, 2018, https://doi.org/10.3390/ijms21051630
  16. Epigenetic Targeting of TERT-Associated Gene Expression Signature in Human Neuroblastoma with TERT Overexpression vol.80, pp.5, 2018, https://doi.org/10.1158/0008-5472.can-19-2560
  17. Activation of NRF2 ameliorates oxidative stress and cystogenesis in autosomal dominant polycystic kidney disease vol.12, pp.554, 2020, https://doi.org/10.1126/scitranslmed.aba3613
  18. Super-enhancer-driven metabolic reprogramming promotes cystogenesis in autosomal dominant polycystic kidney disease vol.2, pp.8, 2018, https://doi.org/10.1038/s42255-020-0227-4
  19. Genome-wide identification of differentially methylated promoters and enhancers associated with response to anti-PD-1 therapy in non-small cell lung cancer vol.52, pp.9, 2020, https://doi.org/10.1038/s12276-020-00493-8
  20. A High-Resolution Map of Human Enhancer RNA Loci Characterizes Super-enhancer Activities in Cancer vol.38, pp.5, 2018, https://doi.org/10.1016/j.ccell.2020.08.020
  21. Identification of Potential Pathogenic Super-Enhancers-Driven Genes in Pulmonary Fibrosis vol.12, pp.None, 2021, https://doi.org/10.3389/fgene.2021.644143
  22. Targeting MYCN in Pediatric and Adult Cancers vol.10, pp.None, 2018, https://doi.org/10.3389/fonc.2020.623679
  23. Identification of Novel Genetic Regulatory Region for Proprotein Convertase FURIN and Interferon Gamma in T Cells vol.12, pp.None, 2018, https://doi.org/10.3389/fimmu.2021.630389
  24. CBP/p300: Critical Co-Activators for Nuclear Steroid Hormone Receptors and Emerging Therapeutic Targets in Prostate and Breast Cancers vol.13, pp.12, 2018, https://doi.org/10.3390/cancers13122872
  25. Aberrant super-enhancer-driven oncogene ENC1 promotes the radio-resistance of breast carcinoma vol.12, pp.8, 2021, https://doi.org/10.1038/s41419-021-04060-5
  26. Super enhancer regulation of cytokine-induced chemokine production in alcoholic hepatitis vol.12, pp.1, 2018, https://doi.org/10.1038/s41467-021-24843-w