• Title/Summary/Keyword: small combustor

Search Result 104, Processing Time 0.025 seconds

Characteristics of Unsteady Combustion and Combustion Control by Pulsating Mixture Supply

  • Yang, Young-Joon;Akamatsu, Fumiteru;Katsuki, Masashi
    • Journal of the Korean Society of Combustion
    • /
    • v.6 no.2
    • /
    • pp.8-14
    • /
    • 2001
  • The effects of unsteady combustion are experimentally studied using forced pulsating mixture supply. It was shown that unsteady combustion used in this experiment plays an important role in controlling self-excited combustion oscillations. It may also have desirable performances, from a practical point of view, such as high combustion load, augmented heat transfer, reduced pollutant emissions and so on. We examined the characteristics of unsteady combustion driven by forced pulsating mixture supply in a small duct-combustor with a rearward-facing step. Further, we found its influence on the onset of self-excited combustion oscillations, the possibility of suppressing self-excited combustion oscillations and the reason why the self-excited combustion oscillation was suppressed using the forced pulsating mixture supply, comparing with the steady mixture supply.

  • PDF

Reduction of NOx emission from fuel nitrogen in new staged fuelling system(1)(Characteristics of NOx formation & reduction)

  • Chun, Young-Nam;Shin, Dae-Yewn
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.E
    • /
    • pp.303-310
    • /
    • 1994
  • The effects of NOx reduction by new staged fuelling system in a small scale combustor (6.6 ㎾$_{T}$) have been investigated using propane gas flames laden with ammonia as fuel-nitrogen. The variables which had the greatest influence on NOx reduction were temperature, reducing stoichiometry( related to main combustion zone stoichiometry, air fraction and returning fuel fraction ) and residence time. The best NOx reduction was observed at the reburning zone stoichiometry of 0.85. In terms of residence time of the reburning zone, NOx reduction was effective when burnout air was injected at the Point where the reburning zone has been already established.d.

  • PDF

The Cooling Performance of Thrust Chamber with Film Cooling (막냉각에 따른 추력실의 냉각 성능)

  • Kim, Sun-Jin;Jeong, Hae-Seung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.1 s.24
    • /
    • pp.117-124
    • /
    • 2006
  • Experiments on film cooling were performed with a small scale rocket engine homing liquid oxygen (LOx) and Jet A-1(jet engine fuel). Film coolants(Jet A-1 and water) were injected through the film cooling injector. Film cooled length and the outside wall temperature of the combustor were determined for chamber pressure, and the different geometries(injection angle) with the flow rates of film coolant. The loss of characteristic velocity due to film cooling was determined for the case of film cooling with water and Jet A-1. As the coolant flow increases, the outside wall temperatures decrease but the decrease in the outside wall temperatures reduced over the 8 percent film coolant flow rate. The efficiency of characteristic velocity was decreased with the Increase of the film coolant flow rate.

THEORETICAL AND NUMERICAL STUDY ON SCAVENGE CHARACTERISTICS IN A SUBCHAMBER OP AN HCCI ENGINE (HCCI 엔진 부실내 소기특성에 대한 이론 및 수치해석적 연구)

  • Suh Y.K.;Heo H.S.
    • Journal of computational fluids engineering
    • /
    • v.10 no.2
    • /
    • pp.21-29
    • /
    • 2005
  • In this paper, we present the theoretical and numerical results of scavenge characteristics in a small subchamber of an HCCI(Homogeneous Charge Compression Ignition) engine. Two theoretical models are proposed in prediction of the scavenge time and the efficiency; one is the non-mixing model in which the input gas(CH4) and the existing gas(air) do not mix at all, and the other is the fully-mixed model in which the two gases are assumed to mix completely before ejection. Focus is also given to the effect on the scavenge performance of the size of the chamber outlet.

Experimental Study on the Temperature Distribution and CO, NOx Emission of Porous Ceramic Oil Burner (다공 세라믹 오일 연소기의 온도분포 및 CO, NOx 배출 특성에 관한 실험적 연구)

  • Cho, J.D.;Kang, J.H.;Lim, I.G.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.398-403
    • /
    • 2000
  • Experimental study on the porous ceramic burner for oil burning has been performed. Temperature profile of the combustor and CO and NOx emission have been obtained for with and without porous ceramic plate. It is found that very uniform and high temperature region with porous ceramic plate can be realized due to high radiation emission from the plate and also obtained lower CO and soot particulate emission, when compared to the conventional burner. When this burning method is applied to conventional boiler of small heating capacity, it is found that near 6 and 7 percent increase in thermal efficiency could be obtained without a proper calibration for optimization.

  • PDF

Combustion Characteristics for Varying Flow Velocity on Methane/Oxygen Diffusion Flames (메탄 산소 확산화염에서 유속 변화에 따른 연소특성)

  • Kim, Ho-Keun;Lee, Sang-Min;Ahn, Kook-Young;Kim, Yong-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.11 s.242
    • /
    • pp.1277-1284
    • /
    • 2005
  • The combustion characteristics of methane oxygen diffusion flames have been investigated to give basic information for designing industrial oxyfuel combustors. NOx reduction has become one of the most determining factors in the combustor design since the small amount of nitrogen is included from the current low cost oxygen production process. Flame lengths decreased with increasing fuel or oxygen velocity because of the enhancement of mixing effect. Correlation equation between flame length and turbulent kinetic energy was proposed. NOx concentration was reduced with increasing fuel or oxygen velocity because of the enhanced entrainment of the product gas into flame zone as well as the reduction of residence time in combustion zone.

A Study on the Asymmetry Factor in Photophoresis (광영동에 있어서의 비대칭인자에 대한 연구)

  • Park, S.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.4
    • /
    • pp.694-702
    • /
    • 1995
  • When a small absorbing particle is exposed to a strong thermal radiation incidence, it moves towards or away from the radiation source due to the nonuniform internal absorption of the radiation. It is called the photophoretic phenomena and governed by the asymmetry factor. An asymmetry factor for the total wavelength range is calculated to estimate the photophoretic phenomena of a particle in a combustor or in the atmosphere and compared to that for a single wavelength. The samples are soot particulates, water droplets, ice particles, silicon particles, $SiO_2$ particles, aluminium oxide particles, whose spectral complex refractive index are available. Although differences between total and monochromatic asymmertry factors are not much for relatively uniform distribution of the spectral refractive index, they are great in general. Therefore the use of the monochromatic factor will considerably deteriorate the accuracy of the calculation of the photophoresis.

  • PDF

Reduction of Nitrogen Oxides from Fuel Nitrogen in New Fuelling System

  • 전영남;채재우
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.10
    • /
    • pp.885-892
    • /
    • 1996
  • The effects of NOx reduction by advanced fuel staging in a small scale combustor (6.6 kWT) have been investigated using propane gas flames laden with ammonia as fuel-nitrogen. The variables which had the greatest influence on NOx reduction were temperature, reducing stoichiometry (relate to main combustion zone stoichiometry, air fraction and reburning fuel fraction) and residence time of reducing zone. NOx reduction was best at the reburning zone temperature of above 1,000 ℃ and reburning zone stoichiometry was 0.85. In terms of residence time of the reburning zone, NOx reduction was effective when burnout air was injected at the point where the reburning zone had been already established. In the advanced fuel staging NOx reduction was relatively large at the burning of higher Fuel-N concentration in the fuel. Under optimum reburning conditions, fuel nitrogen content had a relatively minor impact on reburning efficiency.

A Study on Combustion Characteristic of the Hybrid Combustor with Non-Combustible Diaphragm Position (비연소성 다이아프램의 설치 위치에 따른 하이브리드 연소기의 연소 특성 연구)

  • Kim, Hak-Chul;Moon, Keun-Hwan;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.163-166
    • /
    • 2012
  • The hybrid combustion were performed with the different diaphragm position for the experimental studies on characteristic of regression rate and combustion efficiency. The diaphragm was installed in 25% and 50% of fuel length from the front of solid fuel, respectively. As results of experiments, the position of diaphragm has small effect on the regression rate and combustion efficiency. It is considered that the diaphragm has local effect near the diaphragm.

  • PDF

Study of Design Optimization of Reverse-Annular Type Combustor for Small Gas Turbine Engine (선회형 보염구조의 환형 역류형 연소기 최적화)

  • Park, Hee-Ho;Kim, Ki-Tae;Sung, Ok-Seok;Lim, Byeung-Jun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.401-405
    • /
    • 2011
  • Although the APU combustors were developed successfully, it could face many unexpected hardships in a engine or a system operated under the severe environment. This study is to be verified and settled by experimently and analytically of the problems and issues occurred in a variety of engine and system operation tests.

  • PDF