• Title/Summary/Keyword: small chamber method

Search Result 158, Processing Time 0.028 seconds

Dosimetric Characteristic of Digital CCD Video Camera for Radiation Therapy

  • Young Woo. Vahc;Kim, Tae Hong.;Won Kyun. Chung;Ohyun Kwon;Park, Kyung Ran.;Lee, Yong Ha.
    • Progress in Medical Physics
    • /
    • v.11 no.2
    • /
    • pp.147-155
    • /
    • 2000
  • Patient dose verification is one of the most important parts in quality assurance of the treatment delivery for radiation therapy. The dose distributions may be meaningfully improved by modulating two dimensional intensity profile of the individual high energy radiation beams In this study, a new method is presented for the pre-treatment dosimetric verification of these two dimensional distributions of beam intensity by means of a charge coupled device video camera-based fluoroscopic device (henceforth called as CCD-VCFD) as a radiation detecter with a custom-made software for dose calculation from fluorescence signals. This system of dosimeter (CCD-VCFD) could reproduce three dimensional (3D) relative dose distribution from the digitized fluoroscopic signals for small (1.0$\times$1.0 cm$^2$ square, ø 1.0 cm circular ) and large (30$\times$30cm$^2$) field sizes used in intensity modulated radiation therapy (IMRT). For the small beam sizes of photon and electron, the calculations are performed In absolute beam fluence profiles which are usually used for calculation of the patient dose distribution. The good linearity with respect to the absorbed dose, independence of dose rate, and three dimensional profiles of small beams using the CCD-VCFD were demonstrated by relative measurements in high energy Photon (15 MV) and electron (9 MeV) beams. These measurements of beam profiles with CCD-VCFD show good agreement with those with other dosimeters such as utramicro-cylindrical (UC) ionization chamber and radiographic film. The study of the radiation dosimetric technique using CCD-VCFD may provide a fast and accurate pre-treatment verification tool for the small beam used in stereotactic radiosurgery (SRS) and can be used for verification of dose distribution from dynamic multi-leaf collimation system (DMLC).

  • PDF

Radon Exhalation from Five Wood Species

  • Lee, Ju Yong;Choi, Gyu Woong;Kang, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.735-747
    • /
    • 2018
  • Radon radiation exposures in home have been posed as a potential cancer hazard. This research aims to present the basic data of the indoor radon concentration level by examining the radon exhalation rates of wood species. Radon exhalation rates from five commonly used wood species in Korean wood building construction were measured with Continuous Radon Monitor (CRM), Model 1028 (Sun Nuclear Co., USA) using the Closed Chamber Method (CCM). The mass exhalation rate was observed to vary from $0.00089Bq{\cdot}kg^{-1}{\cdot}h^{-1}$ to $0.00181Bq{\cdot}kg^{-1}{\cdot}h^{-1}$, whereas the surface exhalation rate was observed to be $0.00677-0.01517Bq{\cdot}m^{-2}{\cdot}h^{-1}$. The radon exhalation rate of Quercus accutissima Carruth (white oak) which has the highest density showed the highest figure among the five wood species, on the other hand, the rest of four species showed similar results which were similar to the radon exhalation rates of wood in the U.S.A. and Canada. The average of the concentration measured by the CCM represented well up to the second half-life period (7.7 days). Because result of these small quantities seems to indicate that radon exhalation from the tested wood species has almost negligible impact, the main culprit of the high indoor radon concentration is clearly derived from the background of surrounding wood house. Therefore, as a safety precaution, infrastructures made of wood materials should be designed with the consideration of influx of radon and built accordingly. Furthermore, it is highly desirable that wood will be needed to use for furniture and interior finishing material in indoor environment.

A study on the structure of a diesel spray and the Improvement of the Injection System by the Exciplex Method (EXCIPLEX법에 의한 디젤분무의 구조와 분사계 개선에 관한 연구)

  • 김덕줄;차건종
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2373-2385
    • /
    • 1995
  • The goals of this study are to apply exciplex method to the visualization of the fuel spray of a diesel engine and to investigate the liquid phase of fuel spray that injected at the various tips of a fuel injector. This study provides the informations for the improvement of the diesel injection system and the structures of diesel spry with the boiling of fuel droplets in combustion chamber by the exciplex method. Hexame was used as fuel for approximation to injection condition of the engine. And naphthalene and TMDP were added to the fuel for the visualization by exciplex method. Experimental injectors were 4hole, 8hole, and 1hole impinging injectors. In the injection condition of actual engine the exciplex was sufficient to catch the liquid phase signal. The spray penetration of impinging injector was small than that of actual 4 and 8hole injector but atomization was better. The upper bound of impinging injector was determined by the geometry of a cylinder head and the lower bound was determined by spray angle. On impinging injector the atomization was better at the edge of disk than at center of disk and also the mixing with environmental gas was better.

A Study of Static Pressure Differential Measurement of Nozzle for Miniaturization of a Air Flow Meter (풍량 측정 장치 소형화를 위한 노즐 정압차 측정 연구)

  • Oh, Sang-Teak;Kim, Young Il;Chung, Kwang-Seop
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.10
    • /
    • pp.414-419
    • /
    • 2016
  • Air flow measurement is a fundamental and important task for testing, adjusting, and balancing of HVAC system. However, it is difficult to carry out in the field due to the large size and weight of the flow meter. In this study, for the purpose of developing a small and portable flow meter, we proposed a different method of static pressure measurement and verified it experimentally. In the proposed method, static pressure difference was measured by inserting a tube inside the chamber before and after the nozzles. The results were compared with measurements according to the ANSI/ASHRAE standard. The results were in good agreement, indicating that the inserted tube method could be used for static pressure measurement of a portable flow meter. The proposed method eliminates the pressure tubes that are attached outside, which results in smaller size and easy handling.

Laboratory Experimental Study on Interfacial Friction of Rock and Grout (암반과 그라우트체의 접촉면 마찰 평가를 위한 모의실내실험)

  • Park, Ji-Ho;Kim, Young-Uk;Jeong, Kyeong-Han;Kim, Jung-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3723-3728
    • /
    • 2011
  • This study investigated the friction behaviors of rock and grout through the small /large scale laboratory experiments. The small-scale laboratory tests were undertaken using a specially designed and fabricated equipments to simulate the contact surface of rock. In calibration chamber test, a artificial rock mass was prepared in soil container to measure the tensile resistance of grout. Test condition includes the grouting method of pressure involvement. The results of the tests show that the pressure grouting increases the frictional resistance significantly.

An Experimental Assessment of Combustion Stability of Coaxial Swirl Injectors and an Impinging Injector through Simulating Combustion Test (상압기상연소시험을 통한 동축형 스월 분사기와 충돌형 분사기의 연소 안정성 평가)

  • Park, Junhyeong;Kim, Hongjip
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.1
    • /
    • pp.46-52
    • /
    • 2017
  • High-frequency combustion instabilities may occur during the development of feasible engine combustors. These instabilities can result in irreparable damages to the wall of combustors or the degradation of engine performance. So, it is essential to identify injectors that have high stability characteristics during the early stages of development. The objective of present study was to assess the stability of coaxial injectors and an impinging injector with different recess lengths in order to develop stable injectors optimally. Stability margin was evaluated based on the distance from operating condition to the unstable regions. A simulating combustion test method was used to analyze the stability of injectors. A small-scale combustion chamber was designed to simulate the first tangential acoustic mode of the actual combustor. Gaseous oxygen and a mixture of methane and propane were used as simulant propellants to satisfy their flow similarity to the actual propellants of a combustor in a liquid rocket combustor. The results indicated that injectors having small recess lengths showed relatively large combustion stability margins. For the injectors of large recess lengths, instability regions with large and super-large amplitude oscillations were observed. Thus, injector with shorter recess lengths had a higher stability than that of longer one due to the different mixing processes.

Ideal Freezing Curve Can Avoid the Damage by Latent Heat of Fusion During Freezing (냉동 시 잠재용융열에 의한 피해를 최소화할 수 있는 이상냉동 곡선)

  • 박한기;박영환;윤웅섭;김택수;윤치순;김시호;임상현;김종훈;곽영태
    • Journal of Chest Surgery
    • /
    • v.36 no.4
    • /
    • pp.219-228
    • /
    • 2003
  • Background:Liquid nitrogen freezing techniques have already met with widespread success in biology and medicine as a means of long-term storage for cells and tissues. The use of cryoprotectants such as glycerol and dimethylsulphoxide to prevent ice crystal formation, with carefully controlled rates of freezing and thawing, allows both structure and viability to be retained almost indefinitely. Cryopreservation of various tissues has various con-trolled rates of freezing. Material and Method: To find the optimal freezing curve and the chamber temperature, we approached the thermodynamic calculation of tissues in two ways. One is the direct calculation method. We should know the thermophysical characteristics of all components, latent heat of fusion, area, density and volume, etc. This kind of calculation is so sophisticated and some variables may not be determined. The other is the indirect calculation method. We performed the tissue freezing with already used freezing curve and we observed the actual freezing curve of that tissue. And we modified the freezing curve with several steps of calculation, polynomial regression analysis, time constant calculation, thermal response calculation and inverse calculation of chamber temperature. Result: We applied that freezing program on mesenchymal stem cell, chondrocyte, and osteoblast. The tissue temperature decreased according to the ideal freezing curve without temperature rising. We did not find any differences in survival. The reason is postulated to be that freezing material is too small and contains cellular components. We expect the significant difference in cellular viability if the freezing curve is applied on a large scale of tissues. Conclusion: This program would be helpful in finding the chamber temperature for the ideal freezing curie easily.

Design of Passive-Type Radar Reflector

  • Yim, Jeong-Bin;Kim, Woo-Suk
    • Journal of Navigation and Port Research
    • /
    • v.27 no.3
    • /
    • pp.267-272
    • /
    • 2003
  • This paper describes design method of Passive-type Radar Reflector (PRR) which is to provide the requirement of newly revised 2000 SOLAS regulations on the Radar Reflector. The main target of this work is to find the optimum shape of a radar target having large Radar Cross Section (RCS). Through the RCS analysis based on the theoretical approach, two kinds of PRR models, RRR-F model for use in fisheries and PRR-S model for use in small sized ship, are designed and discussed their RCS performance. RCS measurement tests for the various sized samples are carried out in an anechoic chamber. As evaluation results it was clearly shown that the conventional sphere-type shows optimum shape in case of PRR-S, while the cylinder-type which consists of large sized corner clusters or zig-zag flat plats gives best performance in case of PRR-F.

Unsteady heat transfer and thermal stress analysis of a gasoline engine cylinder head (실린더 헤드의 비정상 열전달 및 열응력 해석)

  • 박진무;임영훈;김병탁
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.41-52
    • /
    • 1990
  • In this study are determined the unsteady temperature and thermal stress fields for a domestic 4-cylinder, 4-cycle gasoline engine cylinder head by the three-dimensional finite element method. A representative part of the cylinder head is modelled as a combination of hexahedron isoparametric elements, and the time-dependent temperature and the heat transfer coefficient of the gas are imposed as the thermal boundary conditions for the engine speeds of 500 rpm and 2000 rpm. The obtained results, which are represented graphically, indicate that the amplitudes of temperature fluctuation during a cycle are about 10.deg. C and 3.deg. C respectively on the surface of combustion chamber, and the maximum temperature fields occur at 30.deg. , 10.deg. respectively before the initiation of the exhaust stroke. Thermal stress fields due to non-uniform temperature distributions show that compressive stress is much larger than tensile stress throughout a cycle. It is also found that the compressive stress varies with substantial amplitude between the exhaust port and ignition plug hole, and the high tensile stress with small fluctuation occurs between exhaust port and the adjacent head bolt hole.

  • PDF

Performance Prediction Methods and Combustion Characteristics of PE-GOX Hybrid Rocket Motor : Part II, Performance Prediction Method (PE-GOX 하이브리드 모터의 연소특성 및 성능 예측 기법 : Part II, 성능 예측 기법)

  • Yoon, Chang-Jin;Song, Na-Young;You, Woo-Jun;Moon, Hee-Jang;Kim, Jin-Kon;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.271-274
    • /
    • 2006
  • In order to predict the performance of the small-scale Polyethylene-GOX hybrid rocket motor, a typical internal ballistic model was proposed. The model adopted for the present study employed the lumped scale of chamber pressure so that the pressure-time history resulted from the present model was comparable to the test results.

  • PDF