• Title/Summary/Keyword: slurry materials

Search Result 506, Processing Time 0.02 seconds

Microstructural changes during semi-solid state processing of hypereutectic Al-Si alloys (고액공존 과공정 Al-Si합금의 교반응고시 미세조직변화)

  • Ryoo, Young-Ho;Kim, Do-Hyang
    • Journal of Korea Foundry Society
    • /
    • v.15 no.5
    • /
    • pp.483-493
    • /
    • 1995
  • The microstructural changes during semi-solid state processing of hypereutectic Al-Si alloy has been investigated in the present study. Stirring of semi-solid slurry results in the morphological changes of the primary Si particles, i.e. from angular rod shape to near-spherical shape. Besides the spherodization of primary Si particles, the average particle size increases, especially, at much higher rate in the final stage than that in the early stage of stirring. Various microstructure characterization techniques, such as anisotropic etching, SEM imaging and ECP analysis, reveal that the spherodization of primary Si particles occurs by the combinations of the mechanisms of coalescence, fracture, and wear of the individual particles. Isothermal shearing of hypereutectic Al-Si at $580^{\circ}C$ shows that spherical ${\alpha}-Al$ particles are formed by the dissociation of Al-Si eutectic structure at the early stage of isothermal shearing. The spherical ${\alpha}-Al$ particles gradually grow by the mechanisms of Ostwald ripening and coalescence of the particles.

  • PDF

The effect of seasonal water temperature on sedimentation characteristics of dredged clay (계절별 수온에 따른 점토의 침강압밀 특성 연구)

  • Oak, Young-Suk;An, Yong-Hoon;Lee, Chul-Ho;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.1183-1189
    • /
    • 2009
  • The sedimentation rate of particles in a suspension is a function of particle size, initial slurry water content and salinity. Many researches conducted on the behavior of dredged soils have centered on such factors. However, there have been few attempts to assess another important influence factor of seasonal water temperature on designing the placement of dredged materials. In this paper, the effect of seasonal water temperature on sedimentation characteristics of dredged clay was investigated with consideration of three different water temperatures, that are $5^{\circ}C$, $15^{\circ}C$, $35^{\circ}C$, which represent critical water temperatures in winter, spring or fall, and summer, respectively. A series of experimental results reveal that the sedimentation rates for the water temperature of $15^{\circ}C$ and $35^{\circ}C$ are very similar each other, but that of $5^{\circ}C$ that represents a winter season leads to a considerably delayed sedimentation compared to the others. This may be attributable to the retardation of ion-leaching from clay particles at low water temperature.

  • PDF

A Study on Bloating of Porous Foam by Pressure Infiltration with H2O2 (과산화수소의 가압침투에 의한 다공성 발포체에 관한 연구)

  • Kim, Gui-Shik;Jeong, Ji-Hyun
    • Journal of Power System Engineering
    • /
    • v.20 no.5
    • /
    • pp.86-91
    • /
    • 2016
  • This paper is concerned chiefly with the method of porous foam manufacture using basalt stone powder sludge. The hydrogen peroxide($H_2O_2$) of bloating agent has lots of problems to manufacture porous lightweight aggregate due to fast reaction rate with cement or calcium hydroxide($Ca(OH)_2$). The $H_2O_2$ injecting method using nozzle for manufacturing porous lightweight aggregate is proposed, in this study. This method is to inject $H_2O_2$ at the pressure of 10 MPa on upper side of slurry mixing materials such as stone powder sludge and quick-lime(CaO) by injector. The specimen was dried in furnace at $100^{\circ}C$ for 1 hour and cured at ambient temperature for 30 days. We analyzed the characteristics including specific gravity and water absorption. The experiments were found that the porous foam has low specific gravity, high water absorption and uniform distribution of porous more than manufactured foam by general bloating methods.

Chemical-assisted Ultrasonic Machining of Glass by Using HF Substitute Solution (불산대체용액을 이용한 유리의 초음파 가공)

  • 전성건;남권선;김병희;김헌영;전병희
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.262-267
    • /
    • 2004
  • Ultrasonic machining has been known as one of the conventional machining methods in the glass fabrication processes. In ultrasonic machining, typically, glass is removed by the impulse energy of the abrasive generated by the ultrasonic power. However, when the machining feature decrease under hundreds of micrometers, as conventional ultrasonic machining uses only the impulse energy of the abrasive, the speed of ultrasonic machining decreases significantly and the surface roughness becomes deteriorated. To overcome this size effect, the chemicals which can erode glasses, such as HF, XF, etc, are added to the slurry. The chemical-assisted ultrasonic machining method, so called, is another alternating effective way for micro machining of glasses. In previous work, we used the hydrofluoric acid (HF) as an additive chemical. But, as the HF solution is too poisonous to be used as a ultrasonic process additive, it is needed to be substituted by other safe chemicals. As results of the machinability comparison of several chemicals, the GST-500F was selected to replace the HF. The GST-500F (pH $4.0{\pm}1.0$) is non-volatile, odorless. During experimental works, it was shown that the machining rate increases 1.5 times faster than the conventional ultrasonic machining. The machining load also decreases. However, the enlargement of the hole diameter and significant tool wear are still the problems to be solved.

Effects of Debinding Atmosphere on Properties of Sintered Reaction-bonded Si3N4 Prepared by Tape Casting Method

  • Park, Ji-Sook;Lee, Sung-Min;Han, Yoon-Soo;Hwang, Hae-Jin;Ryu, Sung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.622-627
    • /
    • 2016
  • The effects of the debinding atmosphere on the properties of sintered reaction-bonded $Si_3N_4$ (SRBSN) ceramics prepared by tape casting method were investigated. Si green tape was produced from Si slurry of Si powder, using 11.5 wt% polyvinyl butyral as the organic binder and 35 wt% dioctyl phthalate as the plasticizer. The debinding process was conducted in air and $N_2$ atmospheres at $400^{\circ}C$ for 4 h. The nitridation process of the debinded Si specimens was performed at $1450^{\circ}C$, followed by sintering at $1850^{\circ}C$ and 20 MPa. The results revealed that the debinding atmosphere had a significant effect on $Si_3N_4$ densification and thermal conductivity. Owing to the higher sintered density and larger grain size, the thermal conductivity of $Si_3N_4$ specimens debinded in air was higher than that of the samples debinded in $N_2$. Thus, debinding in air could be suitable for the manufacture of high-performance SRBSN substrates by tape casting.

Preparation of Affinity Column Based on ZR4+ Ion forPhosphoproteins Isolation

  • Lee, Seon-Mi;Bae, In-Ae;Park, Jung-Hyen;Kim, Tae-Dong;Choi, Seong-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.3
    • /
    • pp.279-285
    • /
    • 2009
  • This paper has described about preparation of $Zr^{4+}$ affinity column based on the poly(styrene-co- gly-cidyl methacrylate) prepared by emulsion polymerization of styrene and glycidyl methacrylate in order to isolate phosphopeptide. The $Zr^{4+}$ ions were introduced after the phophonation of an epoxy group on polymeric microspheres. The successful preparation of $Zr^{4+}$-immobilized polymeric microsphere stationary phase was confirmed through Fourier transform infrared spectra, optical microscopy, scanning electron microscopy, X-ray photoelectron spectra and inductively coupled plasma-atomic emission spectrometer. The separation efficiency for $Zr^{4+}$ affinity column prepared by slurry packing was tested to phosphonated casein and dephosphonated casein. The resolution time (min) of the phosphonated casein was higher than that of dephosphated casein for $Zr^{4+}$ affinity polymeric microsphere by liquid chromatography. This $Zr^{4+}$ affinity column can be used for isolation of phosphonated casein from casein using liquid chromatography.

High-velocity impact of large caliber tungsten projectiles on ordinary Portland and calcium aluminate cement based HPSFRC and SIFCON slabs -Part I: experimental investigations

  • Korucu, H.;Gulkan, P.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.5
    • /
    • pp.595-616
    • /
    • 2011
  • Impact experiments have been carried out on concrete slabs. The first group was traditionally manufactured, densely reinforced concrete targets, and the next were ordinary Portland and calcium aluminate cement based HPSFRC (High performance steel fiber reinforced concrete) and SIFCON (Slurry infiltrated concrete) targets. All specimens were hit by anti-armor tungsten projectiles at a muzzle velocity of over 4 Mach causing destructive perforation. In Part I of this article, production and experimental procedures are described. The first group of specimens were ordinary CEM I 42.5 R cement based targets including only dense reinforcement. In the second and third groups, specimens were produced using CEM I 42.5 R cement and Calcium Aluminate Cement (CAC40) with ordinary reinforcement and steel fibers 2 percent in volume. In the fourth group, SIFCON specimens including 12 percent of steel fibers without reinforcement were tested. A high-speed camera was used to capture impact and residual velocities of the projectile. Sample tests were performed to obtain mechanical properties of the materials. In the companion Part II of this study, numerical investigations and simulations performed will be presented. Few studies exist that examine high-velocity impact effects on CAC40 based HPSFRC targets, so this investigation gives an insight for comparison of their behavior with Portland cement based and SIFCON specimens.

A Study on the Application Limestone Sludge to the Flue Gas Desulfurization Process (제철 산업부산물인 석회석 슬러지의 배연탈황 공정 적용에 관한 연구)

  • Seo, Sung Kwan;Chu, Yong Sik;Shim, Kwang Bo;Lee, Jong Kyu;Song, Hun;Yun, Young Min
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.6
    • /
    • pp.575-583
    • /
    • 2014
  • The flue gas desulfurization (FGD) process is currently the most effective process utilized to remove sulfur dioxide from stack gases of coal-fired plants. However, FGD systems use a lot of limestone as desulfurizing agent. In this study, we use limestone sludge, which is a by-product of the steel industry, to replace the desulfurizing agent of the FGD system. The limestone particle size is found to be unrelated to the desulfurizing rate; the gypsum purity, however, is related. Limestone sludge mixes with limestone slurry delivered at a constant rate in a desulfurizing agent with organic acid are expected to lead to a high desulfurization efficiency and high quality by-product (gypsum).

The Study of Metal CMP Using Abrasive Embedded Pad (고정입자 패드를 이용한 텅스텐 CMP에 관한 연구)

  • Park, Jae-Hong;Kim, Ho-Yun;Jeong, Hae-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.192-199
    • /
    • 2001
  • Chemical mechanical planarization (CMP) has emerged as the planarization technique of choice in both front-end and back-end integrated circuit manufacturing. Conventional CMP process utilize a polyurethane polishing pad and liquid chemical slurry containing abrasive particles. There hale been serious problems in CMP in terms of repeatability and deflects in patterned wafers. Especial1y, dishing and erosion defects increase the resistance because they decrease the interconnection section area, and ultimately reduce the lifetime of the semiconductor. Methods to reduce dishing & erosion have recently been interface hardness of the pad, optimization of the pattern structure as dummy patterns. Dishing & erosion are initially generated an uneven pressure distribution in the materials. These defects are accelerated by free abrasives and chemical etching. Therefore, it is known that dishing & erosion can be reduced by minimizing the abrasive concentration. Minimizing the abrasive concentration by using CeO$_2$is the best solution for reducing dishing & erosion and for removal rate. This paper introduce dishing & erosion generating mechanism and a method fur developing a semi-rigid abrasive pad to minimize dishing & erosion during CMP.

  • PDF

Wear resistance of indirect composite resins used for provisional restorations supported by implants

  • Tsujimoto, Akimasa;Jurado, Carlos;Villalobos-Tinoco, Jose;Barkmeier, Wayne;Fischer, Nicholas;Takamizawa, Toshiki;Latta, Mark;Miyazaki, Masashi
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.4
    • /
    • pp.232-238
    • /
    • 2019
  • PURPOSE. The aim of this study was to investigate simulated localized and generalized wear of indirect composite resins used for implant supported provisional restorations. MATERIALS AND METHODS. The study investigated ten indirect composite resins. Two kinds of wear were simulated by 400,000 cycles in a Leinfelder-Suzuki (Alabama) machine. Localized wear was simulated with a stainless-steel ball bearing antagonist and generalized with a flat-ended stainless-steel cylinder antagonist. The tests were carried out in water slurry of polymethyl methacrylate beads. Wear was measured using a Proscan 2100 noncontact profilometer in conjunction with Proscan and AnSur 3D software. RESULTS. Both localized and generalized wear were significantly different (P<.05) among the indirect composite resins. SR Nexco and Gradia Plus showed significantly less wear than the other indirect composite resins. The rank order of wear was same in both types of wear simulation. CONCLUSION. Indirect composite resins are recommended when a provisional implant-supported restoration is required to function in place over a long period. Although only some indirect composite resins showed similar wear resistance to CAD/CAM composite resins, the wear resistance of all the indirect composite resins was higher than that of bis-acryl base provisional and polymethyl methacrylate resins.