• 제목/요약/키워드: slurry materials

검색결과 506건 처리시간 0.021초

Preparation of Si/C Anode with PVA Nanocomposite for Lithium-ion Battery Using Electrospinning Method

  • Choi, Sung Il;Lee, Ye Min;Jeong, Hui Cheol;Jung, Eun-Jin;Lee, Mi Sun;Kim, Jinyoung;Kim, Yong Ha;Won, Yong Sun
    • Korean Chemical Engineering Research
    • /
    • 제56권1호
    • /
    • pp.139-142
    • /
    • 2018
  • Silicon (Si) is a promising anode material for next-generation lithium ion batteries (LIBs) because of its high capacity of 4,200 mAh/g ($Li_{4.4}Si$ phase). However, the large volume expansion of Si during lithiation leads to electrical failure of electrode and rapid capacity decrease. Generally, a binder is homogeneously mixed with active materials to maintain electrical contact, so that Si needs a particular binding system due to its large volume expansion. Polyvinyl alcohol (PVA) is known to form a hydrogen bond with partially hydrolyzed silicon oxide layer on Si nanoparticles. However, the decrease of its cohesiveness followed by the repeated volume change of Si still remains unsolved. To overcome this problem, we have introduced the electrospinning method to weave active materials in a stable nanofibrous PVA structure, where stresses from the large volume change of Si can be contained. We have confirmed that the capacity retention of Si-based LIBs using electrospun PVA matrix is higher compared to the conservative method (only dissolving in the slurry); the $25^{th}$ cycle capacity retention ratio based on the $2^{nd}$ cycle was 37% for the electrode with electrospun PVA matrix, compared to 27% and 8% for the electrodes with PVdF and PVA binders.

동결-젤 주조 공정 기반 삼차부틸알코올을 이용한 단일방향 기공구조를 가지는 이상인산칼슘 세라믹 지지체의 제조 및 특성평가 (Fabrication and Characterization of Biphasic Calcium Phosphate Scaffolds with an Unidirectional Macropore Structure Using Tertiary-Butyl Alcohol-Based Freeze-Gel Casting Method)

  • 김경록;옥경민;김동현;박홍채;윤석영
    • 한국세라믹학회지
    • /
    • 제50권4호
    • /
    • pp.263-268
    • /
    • 2013
  • Porous biphasic calcium phosphate scaffolds were fabricated by a freeze-gel casting technique using a tertiary-butyl alcohol (TBA)-based slurry. After sintering, unidirectional macropore channels of scaffolds aligned regularly along the TBA ice growth direction were tailored simultaneously with micropores formed in the outer wall of the pore channels. The crystallinity, micro structure, pore configuration, bulk density, and compressive strength for the scaffolds were investigated with X-ray diffractometery, scanning electron microscopy analysis, a water immersion method, and a universal test machine. The results revealed that the sintered porosity and pore size generally resulted in a high solid loading which resulted in low porosity and small pore size, which relatively increased the higher compressive strength. After being sintered at $1100-1300^{\circ}C$, the scaffolds showed an average porosity and compressive strength in the range 35.1-74.9% and 65.1-3.0 MPa, respectively, according to the processing conditions.

화학기계적 연마기술 연구개발 동향: 입자 거동과 기판소재를 중심으로 (Chemical Mechanical Polishing: A Selective Review of R&D Trends in Abrasive Particle Behaviors and Wafer Materials)

  • 이현섭;성인하
    • Tribology and Lubricants
    • /
    • 제35권5호
    • /
    • pp.274-285
    • /
    • 2019
  • Chemical mechanical polishing (CMP), which is a material removal process involving chemical surface reactions and mechanical abrasive action, is an essential manufacturing process for obtaining high-quality semiconductor surfaces with ultrahigh precision features. Recent rapid growth in the industries of digital devices and semiconductors has accelerated the demands for processing of various substrate and film materials. In addition, to solve many issues and challenges related to high integration such as micro-defects, non-uniformity, and post-process cleaning, it has become increasingly necessary to approach and understand the processing mechanisms for various substrate materials and abrasive particle behaviors from a tribological point of view. Based on these backgrounds, we review recent CMP R&D trends in this study. We examine experimental and analytical studies with a focus on substrate materials and abrasive particles. For the reduction of micro-scratch generation, understanding the correlation between friction and the generation mechanism by abrasive particle behaviors is critical. Furthermore, the contact stiffness at the wafer-particle (slurry)-pad interface should be carefully considered. Regarding substrate materials, recent research trends and technologies have been introduced that focus on sapphire (${\alpha}$-alumina, $Al_2O_3$), silicon carbide (SiC), and gallium nitride (GaN), which are used for organic light emitting devices. High-speed processing technology that does not generate surface defects should be developed for low-cost production of various substrates. For this purpose, effective methods for reducing and removing surface residues and deformed layers should be explored through tribological approaches. Finally, we present future challenges and issues related to the CMP process from a tribological perspective.

리튬이온전지 음극용 SiOx 나노입자의 조대화를 통한 전기화학 특성 향상 (Granulations of SiOx Nanoparticles to Improve Electrochemical Properties as a Li-Ion Battery's Anode)

  • 이보라;이재영;장보윤;김준수;김성수
    • 한국전기전자재료학회논문지
    • /
    • 제32권1호
    • /
    • pp.70-77
    • /
    • 2019
  • $SiO_x$ nanoparticles were granulated, and their microstructures and effects on electrochemical behaviors were investigated. In spite of the promising electrochemical performance of $SiO_x$, nanoparticles have limitations such as high surface area, low density, and difficulty in handling during slurry processing. Granulation can be one solution. In this study, pelletizing and annealing were conducted to create particles with sizes of several decades of micron. Decrease in surface area directly influences the initial charge and discharge process when granules are applied as anode materials for Li-ion batteries. Lower surface area is key to decreasing the amount of irreversible phase-formation, such as $Li_2Si_2O_5$, $Li_2SiO_3$ and $Li_4SiO_4$, as well as forming the solid electrolyte interface. Additionally, aggregation of nanoparticles is required to obtain further enhancement of the electrochemical behavior due to restrictions that there be no $Li_4SiO_4$-related reaction during the first discharge process.

SiC 장섬유 강화 SiC 기지 복합재료의 고온강도 특성 (High Temeprature Strength Property of Continuous SiC Fiber Reinforced SiC Matrix Composites)

  • 신윤석;이상필;이진경;이준현
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.102-105
    • /
    • 2005
  • The mechanical properties of $SiC_f/SiC$ composites reinforced with continuous SiC fiber have been investigated in conjunction with the detailed analysis of their microstructures. Especially, the effect of test temperature on the characterization of $SiC_f/SiC$ composites was examined. In this composite system, a braiding Hi-Nicalon SiC fibric was selected as a reinforcement. $SiC_f/SiC$ composites have been fabricated by the reaction sintering process, using the complex matrix slurry with a constant composition ratio of SiC and C particles. The characterization of $RS-SiC_f/SiC$ composites was investigated by means of SEM, EDS and three point bending test. Based on the mechanical property-microstructure correlation, the high temperature applicability of $RS-SiC_f/SiC$ composites was discussed.

  • PDF

세리아 슬러리를 사용한 화학적 기계적 연마에서 계면활성제의 농도에 따른 나노토포그래피의 스펙트럼 분석 (Spectral Analysis of Nanotopography Impact on Surfactant Concentration in CMP Using Ceria Slurry)

  • 강현구;;김성준;백운규;박재근
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 춘계학술발표강연 및 논문개요집
    • /
    • pp.61-61
    • /
    • 2003
  • CMP(Chemical Mechanical Polishing)는 VLSI의 제조공정에서 실리콘웨이퍼의 절연막내에 있는 토포그래피를 제어할 수 있는 광역 평탄화 기술이다. 또한 최근에는 실리콘웨이퍼의 나노토포그래피(Nanotopography)가 STI의 CMP 공정에서 연마 후 필름의 막 두께 변화에 많은 영향을 미치게 됨으로 중요한 요인으로 대두되고 있다. STI CMP에 사용되는 CeO$_2$ 슬러리에서 첨가되는 계면활성제의 농도에 따라서 나노토포그래피에 미치는 영향을 제어하는 것이 필수적 과제로 등장하고 있다. 본 연구에서는 STI CMP 공정에서 사용되는 CeO$_2$ 슬러리에서 계면활성제의 농도에 따른 나노토포그래피의 의존성에 대해서 연구하였다. 실험은 8 "단면연마 실리콘웨이퍼로 PETEOS 7000$\AA$이 증착 된 것을 사용하였으며, 연마 시간에 따른 나노토포그래피 의존성을 알아보기 위해 연마 깊이는 3000$\AA$으로 일정하게 맞췄다. 그리고 CMP 공정은 Strasbaugh 6EC를 사용하였으며, 패드는 IC1000/SUBA4(Rodel)이다. 그리고 연마시 적용된 압력은 4psi(Pounds per Square Inch), 헤드와 정반(table)의 회전속도는 각각 70rpm이다 슬러리는 A, B 모두 CeO$_2$ 슬러리로 입자크기가 다른 것을 사용하였고, 농도를 달리한 계면활성제가 첨가되었다. CMP 전 후 웨이퍼의 막 두께 측정은 Nanospec 180(Nanometrics)과 spectroscopic ellipsometer (MOSS-ES4G, SOPRA)가 사용되었다.

  • PDF

돈분퇴비를 여재로 이용한 Biofilter의 암모니아 제거효율 (Performance Analysis for Ammonia Reduction of Biofilter Using Swine Compost as Filter Material)

  • 장영수;오인환;황현섭;박상혁
    • Journal of Biosystems Engineering
    • /
    • 제33권4호
    • /
    • pp.253-259
    • /
    • 2008
  • In this paper an optimum design of a lab-scale biofilter for absorbing ammonia has been proposed and analyzed. This biofilter is using pine chaff and wood shaving as filter materials. It is assumed that the biofilter can be used as a storage tank of swine manure slurry or swine stall. To evaluate the biofilter performance, the ammonia, mainly offensive odor ingredient, was measured. Swine compost was mixed with filter materials in ratio of 1:1 on weight base. Each test continued for 20 days. The ammonia emissions were reduced by 97.9% and 98.3% in case of using biofilter filled with pine chaff and compost, and wood shaving and compost, respectively. The system was tested with and without adding compost. It was found that the biofilter with wood shaving and compost has an ammonia removal efficiency of 94.1%, while biofilter with wood shaving only has 85.3%. The biofilter with wood shaving and compost showed 8.8% higher removal efficiency than that of wood shaving only. By mixing the compost, the number of microorganism was found to be about 2.3 times more than that of wood shaving only. Therefore it can be concluded that adding compost has a positive effect on the formation of microorganism.

동결건조 공정에서 동결제의 응고조건이 기공특성에 미치는 영향 (Effect of Solidification Condition of Sublimable Vehicles on the Pore Characteristics in Freeze Drying Process)

  • 석명진;김지순;오승탁
    • 한국분말재료학회지
    • /
    • 제21권5호
    • /
    • pp.366-370
    • /
    • 2014
  • The present study demonstrates the effect of solidification condition on the pore structure in freeze drying process using the slurries of CuO/sublimable vehicles. Camphene and Camphor-45 wt% naphthalene based slurries with 14 vol% CuO powder were frozen into a mold at $-25^{\circ}C$, followed by sublimation at room temperature. The green bodies were hydrogen-reduced and sintered at $500^{\circ}C$ for 1 h. The porous Cu specimen, frozen the CuO/camphene slurry into the heated mold of the upper part, showed large pores with unidirectional pore channels and small pores in their internal wall. Also, it was observed that the size of large pores was decreasing near the bottom part of specimen. The change of pore structure depending on the freezing condition was explained by the nucleation behavior of camphene crystals and rearrangement of solid powders during solidification. In case of porous Cu prepared from CuO/Camphor-naphthalene system, the pore structure exhibited plate shape as a replica of the original structure of crystallized vehicles with hypereutectic composition.

Ferrite/Varistor 이종재료 동시소성 시 binder 함량에 따른 수축률 제어 (Control of Shrinkage on the Behavior of Co-firing of Ferrite and Varistor with Binder Content)

  • 한익현;명성재;전명표;조정호;김병익;최덕균
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.34-34
    • /
    • 2006
  • Ferrite/Varistor 이종재료 동시소성에서 소성 시 두 재료간의 서로 다른 수축률에 의한 휠 거동을 ferrite 하소온도와 sheet 제조 시 binder 함량에 따라 제어하였다. Ferrite의 하소온도를 $750^{\circ}C{\sim}900^{\circ}C$로 변화시켰을 때 하소온도가 $900^{\circ}C$ 일 때 수축률이 varistor의 수축률과 악 1%미만의 차이로 가장 유사하였다. $900^{\circ}C$에서 하소한 ferrite의 slurry 제조 시 binder의 함량을 40wt%~50wt%로 변화시키면서 sheet를 제조하여 varistor와 적층하여 $900^{\circ}C{\sim}1000^{\circ}C$에서 소결하였다. Binder 함량이 40wt%에 ferrite와 varistor를 교대로 적층된 시편에서 동시소성 시 휨을 제거할 수 있었다.

  • PDF

건물 외벽 패널용 경량기포콘크리트(AAC)의 CaO/$SiO_2$ 혼합비에 따른 강도 특성 평가 (Strength Characteristics according to the mixed CaO/$SiO_2$ Ratio to Autoclaved Aerated Concrete(AAC) used on the Exterior Panel in Buildings)

  • 김영호
    • 한국디지털건축인테리어학회논문집
    • /
    • 제11권3호
    • /
    • pp.35-42
    • /
    • 2011
  • The exterior system of buildings, which is the typical curtain wall, has been made with glass and metal. Theses materials, however, have weaknesses such as inadequate insulating quality, short durability, combustibility and toxic substance. On the other hand, Autoclaved Aerated Concrete(AAC) or Autoclaved Lightweight Concrete(ALC) possess the great energy efficiency and the superb insulating quality as substitute of existing exterior system materials. In this research, strength characteristics and bubble dispersion of hydrothermal synthesis process of AAC based on CaO/$SiO_2$(C/S) ratio are analyzed. C/S ratio is determinated and bubble distribution and compressive strength are studied through the test of varied water-to-solid mineral ratio(W/S). In hydrothermal synthesis program, final C/S ratio is determined as 0.7 consider of the manufacturing process and hydrothermal synthesis is done at $180^{\circ}C$ for 7 hours. The analysis shows slurry has about 2,300cP viscosity and 0.56 specific gravity therefore it is expected AAC has the appropriate facility in the manufacturing process and Hydrates of AAC's Expansion.