• Title/Summary/Keyword: slurry materials

Search Result 506, Processing Time 0.023 seconds

Preparation and Characterization of Homogeneous Hydroxyapatite Sphere (균일한 Hydroxyapatite Sphere 제조 및 특성분석)

  • Lee, Kang Huk;Shin, Dong Geun;Kwon, Woo Teck;Kim, Hyungsun;Kim, Hee Rae;Kim, Younghee;Kim, Soo Ryong
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.3
    • /
    • pp.145-149
    • /
    • 2014
  • A hydroxyapatite microsphere was prepared using a spray-drying method. The change in the shape as a function of the slurry concentration and the change in the degree of shrinkage according to the heat-treatment temperatures were observed. To obtain biomaterials with improved bio-stability, $CaHPO_4{\cdot}2H_2O$ and $Ca(OH)_2$ were mixed at a ratio of 6 : 4 and then ball-milled to synthesize hydroxyapatite. The hydroxyapatite microsphere was prepared using 30 wt% ~ 80 wt% hydroxyapatite slurry by a spray-drying method. For concentrations lower than 50 wt% or higher than 80 wt%, doughnut-shaped microspheres were produced. However, perfect microspheres were produced when using slurry concentrations of 50 wt% ~ 70 wt%. A dense microstructure was observed after a heat treatment at temperatures higher than $1100^{\circ}C$ and the size was reduced by 24.3% at these temperatures.

Interaction of Solid Particles with the Solidifying Front in the Liquid-Particle Mixture (액상-고체입자 혼합물의 응고 시 응고계면에서의 입자의 거동)

  • Lee, Ho-Suk;Lee, Kyu-Hee;Oh, Sung-Tag;Kim, Young Do;Suk, Myung-Jin
    • Journal of Powder Materials
    • /
    • v.25 no.4
    • /
    • pp.336-339
    • /
    • 2018
  • A unique porous material with controlled pore characteristics can be fabricated by the freeze-drying process, which uses the slurry of organic material as the sublimable vehicle mixed with powders. The essential feature in this process is that during the solidification of the slurry, the dendrites of the organic material should repel the dispersed particles into the interdendritic region. In the present work, a model experiment is attempted using some transparent organic materials mixed with glass powders, which enable in-situ observation. The organic materials used are camphor-naphthalene mixture (hypo- and hypereutectic composition), salol, camphene, and pivalic acid. Among these materials, the constituent phases in camphor-naphthalene system, i.e. naphthalene plate, camphor dendrite, and camphor-naphthalene eutectic exclusively repel the glass powders. This result suggests that the control of organic material composition in the binary system is useful for producing a porous body with the required pore structure.

Sintering Behavior of Fe Nanopowder Agglomerates Prepared by Pressureless Compaction (비가압 성형한 Fe 나노분말응집체의 소결거동)

  • You, Woo-Kyung;Jung, Sung-Soo;Lee, Jai-Sung
    • Journal of Powder Materials
    • /
    • v.15 no.4
    • /
    • pp.271-278
    • /
    • 2008
  • Sintering behavior of iron nanopowder agglomerate compact prepared by slurry compaction method was investigated. The Fe nanopowder agglomerates were prepared by hydrogen reduction of spray dried agglomerates of ball-milled $Fe_2O_3$ nanopowder at various reduction temperatures of $450^{\circ}C$, $500^{\circ}C$ and $550^{\circ}C$, respectively. It was found that the Fe nanopowder agglomerates produced at higher reduction temperature have a higher green density compact which consists of more densified nanopowder agglomerates with coarsed nanopowders. The sintering behavior of the Fe nanopowder agglomerates strongly depended on the powder packing density in the compact and microstructure of the agglomerated nanopowder. It was discussed in terms of two sintering factors affecting the entire densification process of the compact.

Flow properties of Ultra Fine Cement with Superplasticizer (유동화재 변화에 따른 초미립자 시멘트의 유동특성)

  • 채재홍;이종열;이웅종;박경상;김진춘;이세웅
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.58-63
    • /
    • 1999
  • Almost all concrete structures have many inevitable cracks for various reasons such as drying shrinkage, heat liberation of cement, fatigues or repeating loads and movements. Conventionally, they are repaired with epoxy materials. The Epoxy resins used by repair materials are different from properties of the base concrete materials such as thermal and mechanical properties - thermal expansion coefficients, bending strength. And the epoxy resin cannot release the water inside the concrete structure and cause corrosion of the steel bars. In this study, before the experiment got launched, we had analyzed cement and slag. Then We blended the two grades of ultra fine cement using high blaine cement and slag. And the cement slurry was produced by water and suprplasticizer to each blended ultra fine cement in various conditions. The slurry produced by each conditions was evaluated with flow properties such as viscosity, dropping time, segregation and observation of dry surface after injection.

  • PDF

Fabrication of SiC Fiber-SiC Matrix Composites by Reaction Sintering

  • Lim, Kwang-Young;Kim, Young-Wook;Park, Ji-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.4
    • /
    • pp.204-207
    • /
    • 2008
  • This paper presents a new process for producing SiC fiber-SiC matrix(SiC/SiC) composites by reaction sintering. The processing strategy for the fabrication of the SiC/SiC composites involves the following: (1) infiltration of the SiC fiber fabric using a slurry consisting of Si and C precursors, (2) stacking the slurry-infiltrated SiC fiber fabric at room temperature, (3) cross-linking the stacked composites, (4) pyrolysis of the stacked composites, and (5) hot-pressing of the pyrolyzed composites. It was possible to obtain dense SiC/SiC composites with relative densities of >96% and a typical flexural strength of ${\sim}400$ MPa.

Preparation of a Semi-Conductive Thin Film Sensor for Measuring Occlusal Force

  • Yu, Siwon;Kim, Nari;Lee, Youngjin
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.88-92
    • /
    • 2015
  • In order to study the semi-conductive characteristics of carbon black-filled ethylene-propylene-diene monomer (EPDM) composite film, which is used for measuring occlusal force, composite samples with volume ratios of carbon black to EPDM ranging from 30% to 70% were prepared. The process of making a composite film consists of two steps, which involve the preparation of a slurry composition and the fabrication of a thin film using solution casting and a lamination process. To prepare the slurry composition, we dispersed carbon black nanoparticles into an organic solvent before mixing with an EPDM solution in toluene. The mechanical and electrical properties of the resulting carbon black-filled EPDM film were then investigated, and the results showed that the electrical resistance of a film decreases with the increase in the carbon black content. Furthermore, improved elastic recovery was observed after cross-linking the EPDM.

Development of a High Strength Al-Si-Mg Alloy for Rheo-diecasting (레오다이캐스팅을 위한 고강도 Al-Si-Mg 합금설계)

  • Park, Kyu-Sup;Jang, Young-Soo;Choi, Byoung-Hee;Kang, Byung-Kuen;Kim, Hae-Soo;Choi, Sang-Ho;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.32 no.2
    • /
    • pp.98-103
    • /
    • 2012
  • Recently, development of Al-based alloys for high mechanical performance has been an important issue in automotive industry. The present study focused on the design of a high strength Al-based alloy for rheo-diecasting. The research was based on thermodynamic calculation and experimentals to optimize the alloy compositions. Two important considerations were carried out: i) to obtain uniform slurry with fine and globular microstructures for rheo-diecasting, ii) to be strengthend by T6 heat treatment. In order to evaluate the effect of Si content on the slurry microstructure and castability, thermodynamic calculation and fluidity test were carried out. The effects of various alloying components, such as Mg, Cu and Zn, on age hardenability were also investigated. The mechanical properties of the rheo-diecasting products using the newly developed alloy are 324MPa in tensile strength, 289MPa in yield strength, and 11.2% in elongation after T6 heat treatment.

Fabrication of Porous Ni by Freeze Drying and Hydrogen Reduction of NiO/Camphene Slurry (NiO/camphene 슬러리의 동결건조 및 수소환원 공정에 의한 Ni 다공체 제조)

  • Jeong, Jae-Hun;Oh, Sung-Tag;Hyun, Chang-Yong
    • Journal of Powder Materials
    • /
    • v.26 no.1
    • /
    • pp.6-10
    • /
    • 2019
  • In this study, freeze drying of a porous Ni with unidirectionally aligned pore channels is accomplished by using a NiO powder and camphene. Camphene slurries with NiO content of 5 and 10 vol% are prepared by mixing them with a small amount of dispersant at $50^{\circ}C$. Freezing of a slurry is performed at $-25^{\circ}C$ while the growth direction of the camphene is unidirectionally controlled. Pores are generated subsequently by sublimation of the camphene during drying in air for 48 h. The green bodies are hydrogen-reduced at $400^{\circ}C$ and then sintered at $800^{\circ}C$ and $900^{\circ}C$ for 1 h. X-ray diffraction analysis reveals that the NiO powder is completely converted to the Ni phase without any reaction phases. The sintered samples show large pores that align parallel pores in the camphene growth direction as well as small pores in the internal walls of large pores. The size of large and small pores decreases with increasing powder content from 5 to 10 vol%. The influence of powder content on the pore structure is explained by the degree of powder rearrangement in slurry and the accumulation behavior of powders in the interdendritic spaces of solidified camphene.

Li4SiO4 slurry conditions and sintering temperature for fabricating Li4SiO4 pebbles as tritium breeders for nuclear-fusion reactors

  • Young Ah Park;Ji Won Yoo;Yi-Hyun Park;Young Soo Yoon
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2966-2976
    • /
    • 2023
  • A tritium breeder is a lithium-based material capable of producing tritium. Many researchers designing nuclear-fusion energy are studying tritium production using pebbles, which are solid-type breeders. The sphericity and size of the pebbles are critical in obtaining pebbles with good tritium-breeding efficiency. Furthermore, tritium-release efficiency can be increased by using pebbles with appropriate porosities. Promising raw materials for tritium-breeding materials include Li4SiO4 and Li2TiO3. Li4SiO4 has a higher lithium density than Li2TiO3 and exhibits excellent tritium-breeding efficiency. However, it has the disadvantage of being easily decomposed during the Li4SiO4-green-pebble sintering process because of its low structural stability at high temperatures and high lithium density. In this study, we attempted to determine the optimal conditions for manufacturing Li4SiO4 pebbles using the droplet-freeze-drying method. The optimal Li4SiO4 slurry conditions and sintering temperatures were determined. The optimal Li4SiO4 slurry-fabrication conditions were 3 wt% polyvinyl alcohol and 75 wt% Li4SiO4 based on the deionized-water weight content. The sintering temperature at which Li4SiO4 did not decompose and exhibited the optimum porosity of 10.8% was 900 ℃.