DOI QR코드

DOI QR Code

Li4SiO4 slurry conditions and sintering temperature for fabricating Li4SiO4 pebbles as tritium breeders for nuclear-fusion reactors

  • Young Ah Park (Department of Materials Science and Engineering, Gachon University) ;
  • Ji Won Yoo (Department of Materials Science and Engineering, Gachon University) ;
  • Yi-Hyun Park (Korea institute of Fusion Energy (KFE)) ;
  • Young Soo Yoon (Department of Materials Science and Engineering, Gachon University)
  • Received : 2023.02.13
  • Accepted : 2023.04.23
  • Published : 2023.08.25

Abstract

A tritium breeder is a lithium-based material capable of producing tritium. Many researchers designing nuclear-fusion energy are studying tritium production using pebbles, which are solid-type breeders. The sphericity and size of the pebbles are critical in obtaining pebbles with good tritium-breeding efficiency. Furthermore, tritium-release efficiency can be increased by using pebbles with appropriate porosities. Promising raw materials for tritium-breeding materials include Li4SiO4 and Li2TiO3. Li4SiO4 has a higher lithium density than Li2TiO3 and exhibits excellent tritium-breeding efficiency. However, it has the disadvantage of being easily decomposed during the Li4SiO4-green-pebble sintering process because of its low structural stability at high temperatures and high lithium density. In this study, we attempted to determine the optimal conditions for manufacturing Li4SiO4 pebbles using the droplet-freeze-drying method. The optimal Li4SiO4 slurry conditions and sintering temperatures were determined. The optimal Li4SiO4 slurry-fabrication conditions were 3 wt% polyvinyl alcohol and 75 wt% Li4SiO4 based on the deionized-water weight content. The sintering temperature at which Li4SiO4 did not decompose and exhibited the optimum porosity of 10.8% was 900 ℃.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea governments (MSIT) (No. NRF-2021M1A7A4092589).

References

  1. R.A. Pitts, S. Carpentier, F. Escourbiac, T. Hirai, V. Komarov, A.S. Kukushkin, S. Lisgo, A. Loarte, M. Merola, R. Mitteau, A.R. Raffray, M. Shimada, P.C. Stangeby, Physics basis and design of the ITER plasma-facing components, J. Nucl. Mater. 415 (2011) S957-S964, https://doi.org/10.1016/J.JNUCMAT.2011.01.114.
  2. N. Holtkamp, The status of the ITER design, Fusion Eng. Des. 84 (2009) 98-105, https://doi.org/10.1016/J.FUSENGDES.2008.12.119.
  3. V. Barabash, A. Peacock, S. Fabritsiev, G. Kalinin, S. Zinkle, A. Rowcliffe, J.W. Rensman, A.A. Tavassoli, P. Marmy, P.J. Karditsas, F. Gillemot, M. Akiba, Materials challenges for ITER e current status and future activities, J. Nucl. Mater. (2007) 367-370, https://doi.org/10.1016/J.JNUCMAT.2007.03.017, 21-32.
  4. M. Johnston, F. Libby, Tritium Nature' (1951) 5-6.
  5. S. Cho, M.Y. Ahn, D.W. Lee, Y.H. Park, E.H. Lee, J.S. Yoon, T.K. Kim, C.W. Lee, Y.H. Yoon, S.K. Kim, H.G. Jin, K.I. Shin, Y. Il Jung, Y.H. Jeong, Y.O. Lee, D.Y. Ku, C.S. Kim, S.C. Park, I.K. Yu, K. Jung, Overview of helium cooled ceramic reflector test blanket module development in Korea, Fusion Eng. Des. 88 (2013) 621-625, https://doi.org/10.1016/J.FUSENGDES.2013.05.072.
  6. H. Kwast, M. Stijkel, R. Muis, R. Comrad, EXOTIC: Development of ceramic tritium breeding materials for fusion reactor blankets. The behaviour of tritium in: lithium aluminate lithium oxide lithium silicates lithium zirconates (ECN-C-95-123) Netherlands, https://inis.iaea.org/search/search.aspx?org_Q=RN:28012297, 1987.
  7. C.E. Johnson, K.R. Kummerer, E. Roth, Ceramic breeder materials (CONF871036-12) Netherlands, https://inis.iaea.org/search/search.aspx?orig_q=RN:19052891, 1987.
  8. G. Ran, C. Xiao, X. Chen, Y. Gong, L. Zhao, H. Wang, X. Wang, Tritium release behavior of Li4SiO4 pebbles with high densities and large grain sizes, J. Nucl. Mater. 492 (2017) 189-194, https://doi.org/10.1016/j.jnucmat.2017.05.029.
  9. Y.Y. Liu, M.C. Billone, A.K. Fischer, S.W. Tam, R.G. Clemmer, G.W. Hollenberg, Solid tritium breeder materials - Li2O AND LiAlO2: a data base review, Fusion Technol. 8 (1985) 1970-1984, https://doi.org/10.13182/fst85-a24573.
  10. M. Kobayashi, K. Kawasaki, T. Fujishima, Y. Miyahara, Y. Oya, K. Okuno, Release kinetics of tritium generated in lithium-enriched Li2+xTiO3 by thermal neutron irradiation, Fusion Eng. Des. 87 (2012) 471-475, https://doi.org/10.1016/j.fusengdes.2011.12.020.
  11. T. Tanifuji, D. Yamaki, S. Nasu, K. Noda, Tritium release behavior from neutron-irradiated Li2TiO3 single crystal, J. Nucl. Mater. 258-263 (1998) 543-548, https://doi.org/10.1016/S0022-3115(98)00103-2.
  12. M.E. Sawan, M.A. Abdou, Physics and technology conditions for attaining tritium self-sufficiency for the DT fuel cycle, Fusion Eng. Des. 81 (2006) 1131-1144, https://doi.org/10.1016/j.fusengdes.2005.07.035.
  13. I.R. Maemunah, Z. Su'ud, A. Waris, D. Irwanto, Study on fusion blanket with ceramic solid as tritium breeding material, J. Phys. Conf. Ser. 2072 (2021), https://doi.org/10.1088/1742-6596/2072/1/012004, 0-7.
  14. E. Carella, M.T. Hernandez, High lithium content silicates: a comparative study between four routes of synthesis, Ceram. Int. 40 (2014) 9499-9508, https://doi.org/10.1016/J.CERAMINT.2014.02.023.
  15. X. Wu, Z. Wen, X. Xu, X. Wang, J. Lin, Synthesis and characterization of Li4SiO4 nano-powders by a water-based solegel process, J. Nucl. Mater. 392 (2009) 471-475, https://doi.org/10.1016/J.JNUCMAT.2009.04.010.
  16. H. Zhang, H. Guo, M. Ye, Z. Li, H. Huang, Investigation on the packing behaviors and mechanics of Li4SiO4 pebble beds by discrete element method, Fusion Eng. Des. 125 (2017) 551-555, https://doi.org/10.1016/j.fusengdes.2017.04.049.
  17. J.M. Miller, H.B. Hamilton, J.D. Sullivan, Testing of lithium titanate as an alternate blanket material, J. Nucl. Mater. 212-215 (1994) 877-880, https://doi.org/10.1016/0022-3115(94)90961-X.
  18. X. Gao, X. Chen, M. Gu, C. Xiao, S. Peng, Fabrication and characterization of Li4SiO4 ceramic pebbles by wet method, J. Nucl. Mater. 424 (2012) 210-215, https://doi.org/10.1016/J.JNUCMAT.2012.02.018.
  19. M.M.W. Peeters, A.J. Magielsen, M.P. Stijkel, J.G. van der Laan, In-pile tritium release behaviour of lithiummetatitanate produced by extrusion-spheroidisation-sintering process in EXOTIC-9/1 in the high flux reactor, Petten, Fusion, Eng. Des. 82 (2007) 2318-2325, https://doi.org/10.1016/j.fusengdes.2007.05.036.
  20. M.H.H. Kolb, R. Knitter, U. Kaufmann, D. Mundt, Enhanced fabrication process for lithium orthosilicate pebbles as breeding material, Fusion Eng. Des. 86 (2011) 2148-2151, https://doi.org/10.1016/j.fusengdes.2011.01.104.
  21. T. Hoshino, F. Oikawa, Trial fabrication tests of advanced tritium breeder pebbles using sol-gel method, Fusion Eng. Des. 86 (2011) 2172-2175, https://doi.org/10.1016/j.fusengdes.2011.01.065.
  22. A. Shrivastava, T. Kumar, R. Shukla, P. Chaudhuri, Li2TiO3 pebble fabrication by freeze granulation & freeze drying method, Fusion Eng. Des. 168 (2021), https://doi.org/10.1016/j.fusengdes.2021.112411.
  23. S.J. Lee, Y.H. Park, M.W. Yu, Fabrication of Li2TiO3 pebbles by a freeze drying process, Fusion Eng. Des. 88 (2013) 3091-3094, https://doi.org/10.1016/j.fusengdes.2013.09.003.
  24. H. Guo, Y. Shi, H. Wang, R. Chen, Q. Shi, T. Lu, Fabrication of fine-grained Li2TiO3 ceramic pebbles with enhanced crush load by rolling method: optimization of Li/Ti ratio and sintering procedure, J. Nucl. Mater. 563 (2022), 153657, https://doi.org/10.1016/J.JNUCMAT.2022.153657.
  25. K. Tsuchiya, K. Fuchinoue, S. Saito, K. Watarumi, T. Furuya, H. Kawamura, Fabrication development of Li2O pebbles by wet process, J. Nucl. Mater. 253 (1998) 196-202, https://doi.org/10.1016/S0022-3115(97)00312-7.
  26. M. Hong, Y. Zhang, Y. Mi, B. Fu, Characterization of Li2TiO3 pebbles by graphite bed process, J. Nucl. Mater. 441 (2013) 390-394, https://doi.org/10.1016/j.jnucmat.2013.06.024.
  27. M. Hong, Y. Zhang, M. Xiang, Z. Liu, Preparation and characterization of Li4SiO4 ceramic pebbles by graphite bed method, Fusion Eng. Des. 95 (2015) 72-78, https://doi.org/10.1016/j.fusengdes.2015.04.039.
  28. S.A. Yoon, N.R. Oh, A.R. Yoo, H.G. Lee, H.C. Lee, Preparation and characterization of Ta-substituted Li7La3Zr2-xO12 garnet solid electrolyte by sol-gel processing, J. Korean Ceram. Soc. 54 (2017) 278-284. https://doi.org/10.4191/kcers.2017.54.4.02
  29. N. Hellen, H. Park, K.N. Kim, Characterization of ZnO/TiO2 nanocomposites prepared via the sol-gel method, J. Korean Ceram. Soc. 55 (2018) 140-144, https://doi.org/10.4191/kcers.2018.55.2.10.
  30. S. Cho, J.S. Lee, H. Joo, Recent developments of the solution-processable and highly conductive polyaniline composites for optical and electrochemical applications, Polymers 11 (2019), https://doi.org/10.3390/polym11121965.
  31. N. Kakati, G. Das, Y.S. Yoon, Proton-conducting membrane based on epoxy resin-poly(vinyl alcohol)-sulfosuccinic acid blend and its nanocomposite with sulfonated multiwall carbon nanotubes for fuel-cell application, J. Kor. Phys. Soc. 68 (2016) 311-316, https://doi.org/10.3938/jkps.68.311.
  32. H.C. Roh, I.Y. Kim, T.Y. Ahn, H.W. Cheong, Y.S. Yoon, Influence of temperature on performance of CuV2O6 cathode for high voltage thermal battery, J. Korean Ceram. Soc. 58 (2021) 507-518, https://doi.org/10.1007/s43207-021-00129-1.
  33. S.J. Lukasiewicz, Spray-drying ceramic powders, J. Am. Ceram. Soc. 72 (1989) 617-624, https://doi.org/10.1111/j.1151-2916.1989.tb06184.x.
  34. C.J.E. Santos, A.Z. Nelson, E. Mendoza, R.H. Ewoldt, W.M. Kriven, Design and fabrication of ceramic beads by the vibration method, J. Eur. Ceram. Soc. 35 (2015) 3587-3594, https://doi.org/10.1016/j.jeurceramsoc.2015.05.018.
  35. A. Stunda-Zujeva, Z. Irbe, L. Berzina-Cimdina, Controlling the morphology of ceramic and composite powders obtained via spray drying e a review, Ceram. Int. 43 (2017) 11543-11551, https://doi.org/10.1016/j.ceramint.2017.05.023.
  36. H. Jeong, J.K. Lee, Influence of solid loading on the granulation of 3Y-TZP powder by two-fluid spray drying, J. Korean Ceram. Soc. 55 (2018) 337-343, https://doi.org/10.4191/kcers.2018.55.4.04.
  37. L. Zhang, H. Yang, X. Qiao, T. Zhou, Z. Wang, J. Zhang, D. Tang, D. Shen, Q. Zhang, Systematic optimization of spray drying for YAG transparent ceramics, J. Eur. Ceram. Soc. 35 (2015) 2391-2401, https://doi.org/10.1016/j.jeurceramsoc.2015.02.004.
  38. X. Zhou, D. Liu, H. Bu, L. Deng, H. Liu, P. Yuan, P. Du, H. Song, XRD-based quantitative analysis of clay minerals using reference intensity ratios, mineral intensity factors, Rietveld, and full pattern summation methods: a critical review, Solid Earth Sci 3 (2018) 16-29, https://doi.org/10.1016/J.SESCI.2017.12.002.
  39. F.H. Chung, Quantitative interpretation of X-ray diffraction patterns of mixtures. I. Matrix-flushing method for quantitative multicomponent analysis, J. Appl. Crystallogr. 7 (1974) 519-525, https://doi.org/10.1107/s0021889874010375.
  40. D. Cruz, S. Bulbulian, E. Lima, H. Pfeiffer, Kinetic analysis of the thermal stability of lithium silicates (Li4SiO4 and Li2SiO3), J. Solid State Chem. 179 (2006) 909-916, https://doi.org/10.1016/j.jssc.2005.12.020.
  41. H. Migge, Estimation of free energies for Li8SiO6 and Li4SiO4 and calculation of the phase diagram of the Li-Si-O system, J. Nucl. Mater. 151 (1988) 101-107. https://doi.org/10.1016/0022-3115(88)90061-X
  42. T. Tang, H. Huang, D. Luo, Solid-state reaction synthesis and mechanism of lithium silicates, Mater. Sci. Forum (2010) 654-656. https://doi.org/10.13039/10.4028/www.scientific.net/MSF.654-656.2006, 2006-2009.
  43. O. Gotzmann, Thermodynamics of ceramic breeder materials for fusion reactors, J. Nucl. Mater. 167 (1989) 213-224, https://doi.org/10.1016/0022-3115(89)90444-3.
  44. H. Kleykamp, Enthalpies and heat capacities of Li2SiO3 and Li2ZrO3 between 298 and 1400K by drop calorimetry, Thermochim. Acta. 237 (1994) 1-12. https://doi.org/10.1016/0040-6031(94)85178-6
  45. H.R. Ihle, R. Penzhorn, P. Schuster, View of their use as, Fusion Eng. Des. 8 (1989) 393-397. https://doi.org/10.1016/S0920-3796(89)80138-3
  46. B. Konar, M.A. Van Ende, I.H. Jung, Critical evaluation and thermodynamic optimization of the Li-O, and Li2O-SiO2 systems, J. Eur. Ceram. Soc. 37 (2017) 2189-2207, https://doi.org/10.1016/j.jeurceramsoc.2016.12.041.
  47. T. Tang, Density functional theory study of electronic structures in lithium silicates: Li2SiO3 and Li4SiO4, J. At. Mol. Sci. 1 (2010) 185-200, https://doi.org/10.4208/jams.110609.113009a.
  48. C.-H. Doh, A. Veluchamy, M.-W. Oh, B.-C. Han, Analysis on the formation of Li4SiO4 and Li2SiO3 through first principle calculations and comparing with experimental Data related to lithium battery, J. Electrochem. Sci. Technol. 2 (2011) 146-151, https://doi.org/10.5229/jecst.2011.2.3.146.
  49. A. Choudhary, R. Mazumder, S. Bhattacharyya, P. Chaudhuri, Synthesis and characterization of Li4SiO4 ceramics from rice husk ash by a solution-combustion method, Fusion Sci. Technol. 65 (2014) 273-281, https://doi.org/10.13182/FST13-666.
  50. M.D. Donne, G. Sordon, Heat transfer in pebble beds for fusion blankets, Fusion Technol. 17 (1990) 597-635, https://doi.org/10.13182/FST90-A29196.
  51. C. Xiao, X. Gao, M. Kobayashi, K. Kawasaki, H. Uchimura, K. Toda, C. Kang, X. Chen, H. Wang, S. Peng, X. Wang, Y. Oya, K. Okuno, Tritium release kinetics in lithium orthosilicate ceramic pebbles irradiated with low thermal-neutron fluence, J. Nucl. Mater. 438 (2013) 46-50, https://doi.org/10.1016/j.jnucmat.2013.02.069.
  52. Y.H. Park, D.Y. Ku, M.Y. Ahn, Y. Lee, S. Cho, Measurement of thermal conductivity of Li2TiO3 pebble bed by laser flash method, Fusion Eng. Des. 146 (2019) 950-954, https://doi.org/10.1016/j.fusengdes.2019.01.122.
  53. M. De Beer, P.G. Rousseau, C.G. Du Toit, A review of methods to predict the effective thermal conductivity of packed pebble beds, with emphasis on the near-wall region, Nucl. Eng. Des. 331 (2018) 248-262, https://doi.org/10.1016/j.nucengdes.2018.02.029.
  54. J. Reimann, S. Hermsmeyer, Thermal conductivity of compressed ceramic breeder pebble beds, Fusion Eng. Des. 61-62 (2002) 345-351, https://doi.org/10.1016/S0920-3796(02)00165-5.
  55. S. Pupeschi, R. Knitter, M. Kamlah, Effective thermal conductivity of advanced ceramic breeder pebble beds, Fusion Eng. Des. 116 (2017) 73-80, https://doi.org/10.1016/j.fusengdes.2017.01.026.