• 제목/요약/키워드: slot die

검색결과 56건 처리시간 0.024초

연속 슬롯-다이 코팅 및 하소공정을 이용한 MOD-YBCO 초전도 선재 제조 (Continuous Slot-die coating & Calcination process for long length MOD-YBCO coated conductors)

  • 정국채;유재무;고재웅;김영국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제9권1호
    • /
    • pp.14-17
    • /
    • 2007
  • The slot-die coating & calcination process was adopted to fabricate the long YBCO precursor films on the buffered metal tape for the $2^{nd}$ generation coated conductors. To obtain the smooth and crack-free surface of long YBCO precursor films, the parameters of slot-die coating and the process variables of calcination step must be optimized simultaneously in reel-to-reel method. Among the parameter of slot-die coating process, the viscosities of the precursor solution was controlled from 60cP to 200cP to obtain the thicker films from on single coating. The slot-die gap, the injection rate of precursor solution, the moving speed of buffered metal tape etc. are controlled lot the full coverage and smooth surface of YBCO precursor films. The slot-die coated films are moved through the tube furnace with predetermined heating profiles in humid oxygen ambient The YBCO precursor films was identifed with $Y_2O_3,\;BaF_2$, and CuO phase by XRD and consisted of fine grains of about 20nm size observed by FE-SEM. The YBCO films show the critical current density over $MA/cm^2$ using the precursor films formed by the continuous slot-die coating & calcination process.

Slot 코팅 공정에서 Non-Newtonian 유체의 코팅 균일성을 위한 최적 다이 설계 (An Optimal Die Design for the Coating Uniformity of Non-Newtonian Liquids in Slot Coating Process)

  • 이시형;고현정;심서훈;정현욱;현재천
    • Korean Chemical Engineering Research
    • /
    • 제49권3호
    • /
    • pp.314-319
    • /
    • 2011
  • 본 연구에서는 전산유체모사기인 Fluent를 활용하여 slot 다이 내부에서 Newtonian과 non-Newtonian 코팅액의 동적 거동을 고찰함으로써 최적 다이 설계를 위한 방법론을 구축하고자 하였다. 다이 출구에서 코팅액의 속도분포를 일정하게 하기 위해 chamber 구조를 변화시킴으로써 최적 하이브리드 다이의 설계가 가능하였다. 특히, non-Newtonian 유체의 경우, 전단담화 정도와 chamber의 coat-hanger 최적 길이의 상관관계를 도출하였다.

Slot Die Coating 공법으로 코팅된 PEDOT:PSS Flexible 투명 전극의 특성 연구

  • 고은혜;김효중;이혜민;조다영;서기원;김한기
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.201.1-201.1
    • /
    • 2014
  • 본 연구에서는 Slot die coating 공법으로 코팅된 Poly (3-4 ethylenedioxythiophene): Poly (styrenesulfonate) (PEDOT:PSS) 박막과 비정질 ITO 박막의 전기적, 광학적, 기계적 특성을 비교 평가하여 Slot die coating 공법으로 코팅된 PEDOT:PSS 박막의 유기태양전지의 전극으로서의 적용가능성을 확인하였다. 상업용 PEDOT:PSS 박막은 보통 280 Ohm/sq.의 면저항과 가시광 영역에서 약 80%의 광투과도를 나타내며, 비정질 ITO 박막과 유사한 전기적, 광학적 특성을 나타내었다. Slot die coating 공법을 통해 제작된 PEDOT:PSS 투명 전극과 비정질 ITO 투명 전극의 기판 휘어짐에 따른 전기적 안정성을 비교 평가하기 위해 25 mm에서 1 mm까지 radius 변화에 따른 저항의 변화를 측정하였다. 그 결과, 비정질 ITO 투명 전극 대비 PEDOT:PSS 투명 전극이 더 우수한 전기적 안정성을 나타냄을 확인하였다. 또한, 다양한 Bending test (Inner/Outer bending, Rolling, Stretching, Twisting) 를 통해 비정질 ITO 투명 전극 보다 Slot die coating 공법으로 코팅된 PEDOT:PSS 투명 전극의 우수한 기계적 특성을 확인하였다. 이를 바탕으로 Flexible 유기태양전지에의 적용 가능성을 알아보기 위해 Slot die coating 공법으로 코팅된 PEDOT:PSS 투명 전극과 비정질 ITO 투명 전극을 유기태양전지의 anode 층에 적용하여 각각 제작하고 그 특성을 평가하였다. 비정질 ITO 투명 박막을 적용한 유기태양전지 대비 Slot die coating 공법으로 코팅된 PEDOT:PSS 투명 박막으로 제작한 유기태양전지에서 더 높은 효율이 나타났으며, 이로써 Slot die coating 공법으로 코팅된 PEDOT:PSS 투명 전극의 Flexible 유기태양전지로써의 적용 가능성을 확인하였다.

  • PDF

Smooth and uniform coated films on flexible substrates by optimization of slot-die process parameters

  • 정국채;정태정;김영국;최철진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.179-179
    • /
    • 2009
  • For the deposition of the semiconductor nanocrystals or quantum dots, it is required to have the substrates with smooth surface roughness. Slot-die coating method wad adopted and optimized varying the processing parameters like coating speed, gap distance, solution concentration, etc to get the smooth coated films on flexible substrates. The coating speed in slot-die method was varied from 1 m/min to 2.5 m/min focusing especially on its industrial usage. The gap distance between the substrate surface and slot-die lip was changed also to control mainly the thickness of coated films.

  • PDF

CFD를 이용한 슬롯 다이 헤드 내부의 유체 분포 분석 (Study on Fluid Distribution in Slot-die Head Using CFD)

  • 유수호;김기은;신영균;박종운
    • 반도체디스플레이기술학회지
    • /
    • 제21권4호
    • /
    • pp.39-44
    • /
    • 2022
  • Using a CFD (computational fluid dynamics) simulation tool, we have offered a design guideline of a slot-die head having a simple T-shaped cavity through an analysis of the fluid dynamics in terms of cavity pressure and outlet velocity, which affect the uniformity of coated thin films. We have visualized the fluid flow with a transparent slot-die head where poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) is injected. We have shown that the fluid dynamics inside the slot-die head depends sensitively on the cavity depth, cavity length, land length, and channel gap (i.e., shim thickness). Of those, the channel gap is the most critical parameter that determines the uniformity of the pressure and velocity distributions. A pressure drop inside the cavity is shown to be reduced with decreasing shim thickness. To quantify it, we have also calculated the coefficient of variation (CV). In accordance with Hagen-Poiseuille's laws and electron-hydraulic analogy, the CV value is decreased with increasing cavity depth, cavity length, and land length.

Continuous 와 pattern slot 코팅 공정에서의 유동특성과 다이 설계 (Dynamics and die design in continuous and patch slot coating processes)

  • 김수연;심서훈;신동명;이주성;정현욱;현재천
    • 한국유변학회:학술대회논문집
    • /
    • 한국유변학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.81-84
    • /
    • 2006
  • Slot coating process, in continuous and patch modes, has been applied for the many precise coating products, e.g., flat panel displays and second batteries. However, manufacturing uniform coating products is not a trivial task at high-speed operations because various flow instabilities or defects such as leaking, bubbles, ribbing, and rivulets are frequently observed in this process. It is no wonder, therefore, that many efforts to understand the various aspects of dynamics and coating windows of this process have been made both in academia and industry. In this study, as the first topic, flow dynamics within the coating bead in slot coating process has been investigated using the one-dimensional viscocapillary model by lubrication approximation and two-dimensional model by Flow-3D software. Especially, operability windows in both 1D and 2D cases with various slot die lip designs have been successfully portrayed. Also, effects of process conditions like viscosity and coating gap size on slot coating window have been analyzed. Also, some experiments to find minimum coating thickness and coating windows have been conducted using slot die coater implemented with flow visualization device, corroborating the numerical results. As the second topic, flow dynamics of both Newtonian and Non-Newtonian fluids in patch or pattern slot coating process, which is employed in manufacturing IT products such as secondary batteries, has been investigated for the purpose of optimal process designs. As a matter of fact, the flow control in this system is more difficult than in continuous case because od its transient or time-dependent nature. The internal die and die lip designs for patterned uniform coating products have been obtained by controlling flow behaviors of coating liquids issuing from slot. Numerical simulations have been performed using Fluent and Flow-3D packages. Flow behavior and pressure distribution inside the slot die has been compared with various die internal shapes and geometries. In the coating bead region, efforts to reduce irregular coating defects in head and tail parts of one patterned coating unit have been tried by changing die lip shapes. It has been concluded that optimal die internal design gas been developed, guaranteeing uniform velocity distribution of both Newtonian and shear thinning fluids at the die exit. And also optimal die lip design has been established, providing the longer uniform coating layer thickness within one coating unit.

  • PDF

슬롯다이 코팅의 최적화 조건에 관한 연구 (Study on the Optimized Condition of the Slot-Die Coating Process)

  • 서응수;예정우;황중국;심재술;채영석
    • 대한기계학회논문집A
    • /
    • 제39권9호
    • /
    • pp.937-945
    • /
    • 2015
  • 본 연구에서는 코팅 공정에 사용되는 슬롯다이(slot-die)에 대해 조건에 따른 코팅 성능을 연구하였다. 슬롯다이 코팅은 코팅 되는 필름의 속도, 코팅액의 점도 그리고 슬롯다이로 주입 되는 압력에 따라 코팅 품질이 많이 달라진다. 따라서 본 논문에서는 CFD 코드를 이용하여 안정적인 코팅을 위한 최적의 조건을 찾았다. 다양한 코팅액의 점도와 슬롯다이 입구의 압력 그리고 코팅 필름의 속도에 대해서 해석을 수행하였다. 그 결과로 $5kgf/cm^2$의 압력과 100cps 의 점도 그리고 20m/min 의 속도 조합에서 가장 안정적으로 코팅액이 잘 도포되었다.

대면적 OLED 면광원을 위한 PEDOT : PSS 슬롯다이 코팅 (Slot-Die Coating of PEDOT : PSS for Large-Area OLED Lighting Sources)

  • 최광준;이진영;전경준;유수호;박종운;서화일;서유석
    • 반도체디스플레이기술학회지
    • /
    • 제14권1호
    • /
    • pp.61-65
    • /
    • 2015
  • We have fabricated poly(3,4-ethylenedioxythiophene) : poly(4-styrenesulfonate) (PEDOT : PSS) thin films using a slotdie coater for the applications of OLED lightings. It is demonstrated that the properties of slot-die coated PEDOT : PSS films are comparable with those of spin-coated ones. Namely, the average and peak-to-peak roughness of the slot-die coated 50-nm-thick PEDOT : PSS film are measured to be as low as 0.247 nm and 1.3 nm, respectively. Moreover, we have obtained excellent thickness uniformity (~1.91%). With the slot-die coated PEDOT : PSS films, we have fabricated green phosphorescent OLED devices. For comparison, we have also fabricated OLED devices with spin-coated PEDOT : PSS films. Both show almost no discrepancy in device performance. The power efficiency (25.4 lm/W) and emission uniformity (77%) of OLEDs with slot-die coated PEDOT : PSS films are shown to be slightly lower than those (27.3 lm/W, 80%) of OLEDs with spin-coated PEDOT : PSS films at the luminance of 1,000nit, increasing the feasibility of using a slot-die coating process for the fabrication of large-area OLED lighting sources at a competitive price.

롤투롤 슬롯-다이 대면적 코팅 공정 최적화를 위한 통계적 모델링 방법 (A Statistical Analysis for Slot-die Coating Process in Roll-to-roll Printed Electronics)

  • 박장훈;이창우
    • 한국기계가공학회지
    • /
    • 제12권5호
    • /
    • pp.23-29
    • /
    • 2013
  • Recent advances in printing technology have increased the productivity of the roll-to-roll (R2R) printing process for printed circuitry. In the R2R printed electronics, characteristics of printed and coated layers are one of the most important issues that determine the functional quality of final products. The slot-die technology can coat a large area with high uniformity using low-viscosity materials; determining the process parameters is important to obtain excellent coating qualities. In this study, a viscocapillary model was used to predict qualities of coated layers and patterns. On the basis of analysis results, a novel meta model was derived using design of experiment methodology to improve accuracy. Sensitivity analysis was performed to define major parameters in R2R slot-die coating process. The coating speed was found to most significantly affect the coated layer thickness and was easily controlled. The performance of the proposed model is verified through experimental studies. Based on the statistical analysis results, R2R slot die process can be optimized to guarantee a desired thickness.

연속 slot-die 코팅법을 이용한 TPD 유기 정공수송층의 코팅 특성 분석 (Coating Properties of a TPD Organic Hole-transporting Layer Deposited using a Continuous slot-die Coating Method)

  • 정국채;김영국;최철진
    • 대한금속재료학회지
    • /
    • 제48권4호
    • /
    • pp.363-368
    • /
    • 2010
  • N,N'-diphenyl-N,N'-bis(3-methylphenyl)1-1' biphenyl-4,4'-diamine (TPD) hole-transporting layers were deposited using a continuous slot-die coating method on ITO/PET flexible substrates. It is crucial that the substrates have a very smooth surface with a RMS roughness of less than 2 nm for the deposition of semiconductor nanocrystals or Quantum Dots. The parameters of the slot-die coating, including the solution concentration of the TPD, the gap between the slot-die and the substrates, and the coating speed were controlled in these experiments. To obtain full coverage of the TPD films on the ITO/PET substrates (40 mm wide and several meters long), the injection rates of the TPD solution were increased proportional to the coating speed of the flexible substrates. Additionally, the injection rates must be increased as the gap distance changes from 400 to 600 ${\mu}m$ at the same coating speed. A RMS surface roughness of less than 2 nm was obtained, in contrast to bare ITO/PET substrates, at 13 nm, as the coating speed and gap distance increased.