• Title/Summary/Keyword: slope stability index

Search Result 78, Processing Time 0.02 seconds

Study on the comparison topographical factor with slope stability using fractal dimension and surface area index (프랙탈 차원과 표면적 지수를 이용한 지형인자와 사면안정성 비교 연구)

  • Noh, Soo-Kack;Chang, Pyoung-Wuck;Cha, Kyung-Seob
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.387-392
    • /
    • 2005
  • The research was performed to predict the potential landslide with roughness index. It was known that fractal dimension and surface area index can be represented the topography, specially when the natural slopes were rough or rugged. A test site was selected and fractal dimension and surface area index were calculated from the irregular triangle network. Fractal dimension were ranged between $2.016{\sim}2.046$ and surface area index $1.56E+07{\sim}2.59E+07$. Surface area index increased as fractal dimension increased. Slope stability was calculated by infinite slope stability analysis model and was compared to slope stability by fractal and surface area index. In the result, unsafe zones where slope stability is under 1.1 were $5.11{\sim}6.25%$ for the test site. It can be said that fractal dimension and surface area index are a good index to evaluate the slope stability because when fractal dimension and surface area index are greater, then stability of the site is more unsafe.

  • PDF

The Development of Rail-Transport Operation Control using the Variation of Slope Stability under Rainfall (강우시 사면안전율 변화를 이용한 열차운전규제기준 개발)

  • Kim, Hyun-Ki;Lee, Jin-Wook;Shin, Min-Ho
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.397-402
    • /
    • 2003
  • Infiltration of rainfall causes railway embankment to be unstable and may result in failure. Basic relationship between the rainfall and stability of railway embankment are defined to analyze the stability of embankment by rainfall. An experimental study for defining of infiltration rate of rainfall into slope is conducted in the lab. The results of Rainfall infiltration show that rainfall infiltration is not equal to infiltration as like reservoir because rate of rainfall infiltration is controlled by slope angle. Based on these results, boundary condition of rainfall is altered and various numerical analysis are performed. The variation of shear strength, the degree of saturation and pore-water pressure for railway slope during rainfall can be predicted and the safety factor of railway slope can be expressed as the function of rainfall amount, namely rainfall index. Therefore, it is judged that this rainfall index can be a good tool for the rail-transport operation control.

  • PDF

The Index of the Stability of Misconceptions (오개념의 견고성 지수)

  • Lee, Yung-Jick;Kwon, Jae-Sool
    • Journal of The Korean Association For Science Education
    • /
    • v.13 no.3
    • /
    • pp.310-316
    • /
    • 1993
  • One of the major characteristics in misconceptions is the stability over time. However, the concept of stability has not been defined clearly yet even though some trials to quantify the stability has been done. In this study, the researcher tried to establish a stability index of students' misconception for the quantification. In this study, the stability of a misconception was defined using mean correct choice (MC), the slope of correct choice (C), mean incorrent choice(MI) and the slope of incorrect choice(I) as follows; I=1/3 (1-C) (1+I)(1-MC)(1+MI). The index developed in the study was examined using artificial data. In this study, the index seemed to represent the charicteristics of the stability inferred by theoretically. This means the index developed in this study has some validity for the time being. Howerever, since artificial data were used to exame the index, it showed be reexamined using real data in the future study.

  • PDF

A Study of Limit State Design Method in Soil Slope (토사면의 한계상태 설계법에 관한 연구)

  • Joung, Gi-Hun;Kim, Jong-Min;Jang, Bum-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.129-136
    • /
    • 2005
  • The deterministic analysis method has generally used to evaluate the slope stability and it evaluates the slope stability with decision value that is a representative value of design variables. However, one of disadvantages in the deterministic approach is there is not able to consider the uncertainty of soil strength properties, even though it is the biggest influential parameter of the slope stability. On the other hand, the limit state design(LSD) can take a consideration of uncertainties and computes both the reliability index and the probability of failure. LSD method is capable of overcoming the disadvantages of deterministic method and evaluating the slope stability more reliably. In this study, both the mean value and standard deviation of the internal land's representative soil strength properties applied to process the LSD method. The major purpose of this study is to gauge the general applicability of the limit state design in soil slope and to weigh the comparative validity of the proposed partial safety factor. In order to reach the aim of this study, the partial safety factor and resistance factor which totally satisfied the slope's overall safety factor were calculated by the load and resistance safety factor design (LRFD).

  • PDF

Reliability Based Real-time Slope Stability Assessment

  • Lee, Seung-Rae;Choi, Jung-Chan;Kim, Yun-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.427-435
    • /
    • 2008
  • A reliability based slope stability assessment method is proposed and examined considering the variation of matric suction which is measured by a real time slope monitoring system. Mean value first order reliability method and advanced first order reliability method are used to calculate reliability indices of a slope. The applicability of methods is compared by applying them to the range of matric suctions measured by the real-time monitoring system. Sensitivity analysis is also performed to examine the contribution of random variables to the reliability index of slope. Finally, the proposed method is applied to a model slope. The results show that the reliability index of slope can be used for efficient slope management by quantifying the risk of slope in real time.

  • PDF

Rail Transport Operation Control for Railway Embankment under rainfall (강우시 성토사면의 열차운전규제기준)

  • Kim, Hyun-Ki;Shin, Min-Ho;Choi, Chan-Yong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.225-232
    • /
    • 2009
  • Infiltration of rainfall causes railway slopes to be unstable and may result in failure. Basic relationship between the rainfall and stability of railway embankment is defined to analyze its stability by rainfall. An experimental study for defining of infiltration rate of rainfall into slope is conducted in the lab. The results of Rainfall infiltration show that rainfall infiltration is not equal to infiltration as like reservoir because rate of rainfall infiltration is controlled by slope angle. Based on these results, boundary condition of rainfall is altered and various numerical analysis are performed. The variation of shear strength, the degree of saturation and pore-water pressure for railway slope during rainfall can be predicted and the safety factor of railway slope can be expressed as the function of rainfall amount, namely rainfall index. And suggested rainfall index is compared with the rail transport operation control which is used in KORAIL. It is judged that this rainfall index can be a good tool for the rail-transport operation control.

  • PDF

A Study to Develop a Practical Probabilistic Slope Stability Analysis Method (실용적인 확률론적 사면안정 해석 기법 개발)

  • 김형배;이승호
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.271-280
    • /
    • 2002
  • A probabilistic approach to identify the effects of uncertainties of soil strength parameters on searching a critical slip surface with the lowest reliability is introduced. In general construction field, it is impossible for the engineer to always gather a variety of statistical information of soil strength parameters for which lots of laboratory and in-situ soil testing are required and to use it with enough statistical knowledge. Thus, in order that the engineer may easily understand the probabilistic concept for the slope stability analysis, this study proposes a combined procedure to incorporate the engineering probabilistic tools into the existing deterministic slope stability analysis methods. Using UTEXAS 3, a slope stability analysis computer program developed by U.S. Army Corps of Engineers (U.S. COE), this study provides the results of this probabilistic slope stability analysis in terms of probability of failure or reliability index. This probabilistic method f3r slope stability analysis appears to yield more comprehensive results of slope reliability than does existing deterministic methods with safety factors alone.

The Variation of Slope Stability by Ground Water Level in Railway Lines (지하수위에 따른 철도사면의 안정성 변화)

  • Kim, Hyun-Ki;Shin, Min-Ho;Shin, Ji-Soo
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.789-795
    • /
    • 2008
  • Slope stability is affected by various factors. For safety management of slopes, monitoring systems have been widely constructed along railway lines. The representative data from the systems are variations of ground profile such like ground water level and pore water pressure etc. and direct displacement measured by ground clinometer and tension wire sensor. Slopes are mainly effected by rainfall and rainfall causes the decrease of factor of safety(FOS). Because FOS varies linearly by the variation of ground water level and pore pressure, it has a weak point that could not define the time and proper warning sign to secure the safety of the train. In this study, alternative of FOS such as reliability index and probability of failure is applied to slope stability analysis introducing the reliability concept. FOS, reliability index, probability of failure and velocity of probability of failure of the slopes by variation of ground water level are investigated for setting up the specification of safety management of slopes. By executing case study of a slope(ILLO-IMSUNGLI), it is showed to be applied to specification of safety management.

  • PDF

Regional Evaluation of Slope Stability by Using GIS and Geostatistics Around the Southern Area of Chungju Lake (GIS와 지구통계학을 이용한 충주호 남부지역의 광역적인 사면안정평가)

  • 문상기
    • Economic and Environmental Geology
    • /
    • v.33 no.2
    • /
    • pp.117-128
    • /
    • 2000
  • Regional evaluations of slope stability by the failure criterion and by environmental geological factors were conducted. The failure criterion is the general conditions for plane failure which consider the geometrical conditions between geological discontinuities and topographical slope planes. The factor focused in this condiction is dip and dip direction. Geostatics, named semivariogram was used for establishing structural domains in slope stability evaluation by the failure criterion. The influential range was calculated to 6 km in the case of dip direction of dominant joint set and 7 km in the case of dip of the same dominant joint set. Then applying this failure criterion to the study area produced a slope stability map using the established domains and slopes generated by TIN module of ARC/INFO GIS. This study considered another regional slope stability analysis. 5 failure-driven factors 9the unstable slope map, geology, engineering soil, groundwater, and lineament density) were selected and used as data coverages for regional slope stability evaluation by geoenvironmental factors. These factors were weighted and overlayed in GIS. From the graph of cumulatave area (%) and instability index, finding critical points classified the instability indices. The most unstable slopes are located in the southern area of Mt. Eorae, Dabul-ri, and the eastern area of Junkok-ri in the first area is plane failure. Also, the expected orientations of failure are 59/338 and 86/090 (dip/dip direction).

  • PDF

A Comparative Analysis on Slope Stability Using Specific Catchment Area Calculation (비 집수면적 산정기법에 따른 사면 안정성 비교·분석)

  • Lee, Gi-Ha;Oh, Sung-Ryul;An, Hyun-Uk;Jung, Kwan-Sue
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.7
    • /
    • pp.643-656
    • /
    • 2012
  • There has been an increase for the landslide areas and restoration expenses due, in large part, to the increased locally heavy rains caused by recent climate change as well as the reckless development. This study carried out a slope stability analysis by the application of distributed wetness index, using the GIS-based infinite slope stability model, which took the root cohesion effect into consideration, for part of Mt. Umyeon in Seoul, where landslide occurred in July 2011, in order to compensate the defects of existing analysis method, and subsequently compared its result with the case on the exploitation of lumped wetness index. In addition, this study estimated the distributed wetness index by methodology, applying three methods of specific catchment area calculation: single flow direction (SFD), multiple flow direction (MFD), and infinity flow direction (IFD), for catchment area, one of the variables of distributed wetness indices, and finally implemented a series of comparative analysis for slope stability by methodology. The simulation results showed that most unstable areas within the study site were dominantly located in cutting-area surroundings along with the residential area and the mountaintop and unstable areas of IFD and lumped wetness index method were similar while SFD and MFD provided smaller unstable areas than the two former methods.