• Title/Summary/Keyword: slope management

Search Result 797, Processing Time 0.027 seconds

Evaluation of Steep Slopes Adjacent to Multi-use Facilities in National Parks using GIS (GIS를 활용한 국립공원 다중이용시설 인접 급경사지 평가)

  • Lee, Dong Hyeok;Jun, Kye Won;Jung, Min Jin;Park, Jun Hyo
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.4
    • /
    • pp.29-36
    • /
    • 2021
  • Recently, due to climate change, the slope is increasing, and the risk of steep slope disasters such as the occurrence of slope collapse in the east coast and Busan region in 2019 and the Gokseong landslide in 2020 is increasing. Particularly, most national parks are made up of mountainous areas, and the risk of disasters on steep slopes is increasing. As the ground of the national park is aging and the weathering and jointing of the bedrock are accelerating due to climate change, the slope collapse and rockfall are increasing, and the annual number of visitors is increasing, it is necessary to manage steep slopes adjacent to multi-use facilities with many users. In this study, dangerous steep slopes that affect multi-use facilities in national parks were analyzed using GIS and verified through field surveys. As a process for extracting steep slopes adjacent to multi-use facilities in national parks, the slope was made in DEM and slopes of 34 degrees or higher were extracted. The difference between the maximum and minimum heights of the extracted slopes was used to confirm that the slopes met the standard for steep slopes, and the analysis of the slope direction was used to confirm whether it had an effect on the multi-use facilities. After that, precision aerial images and field photos were analyzed to finally identify risks at 4 sites, and field surveys were conducted. As a result of the field survey, all 4 sites were found to be steep slopes, 3 were graded D and 1 was graded C, so it was confirmed that management was required as a risk of collapse. All steep slopes extracted through GIS were found to be dangerous, so it is judged that the extraction of steep slopes through GIS would be appropriate.

Evaluation of the Stability Management Methods for Embankments on Soft Clay Using Numerical Analysis (수치해석을 이용한 연약지반 성토 안정관리법 평가)

  • Kim, Jong-Ryeol;Park, Hwa-Joung;Hwang, Soung-Won;Kang, Hee-Bog
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.202-208
    • /
    • 2005
  • In Korea it tends to rely on foreign standards for the stability management of the embankment slope on the soft clay layer. The Matsuo-Kawamura's method, the Kurihara's method, the Tominaga- Hashimoto's method and the Shibata-Sekiguchi's method are generally employed at site. In this study these slope stability methods are investigated and the applicability of the stability management methods is evaluated through numerical analysis. It is evaluated that stability is overestimated to some degree by the Matsuo-Kawamura method. According to the result by the Tominaga-Hashimoto method there is some risk of sudden failure. This implies that the careful attention is necessary for the management of monitoring the field data. Even though the stability tends to be underestimated by the Kurihara's method, however, it is estimated that this method is applicable to the field when the probable uncertainty at site is considered. For the Shibata-Sekiguchi's method, there is some difficulties in determining the failure index for the practical application, it is considered as safe when the existing estimated failure index is greater than ${\Delta}_q/{\Delta}{\delta}$. In this study, however, it is evaluated to be safe as well when ${\Delta}_q/{\Delta}{\delta}$ to load shows the tendency of constant increase.

A Study on Small Composite Designs for Fitting Second Order Response Surface Models (2차 반응표면분석 모델 적합을 위한 부분합성계획에 관한 연구)

  • Park Sung-Hyun;Seo Hyeok;Park Jun-Oh
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 1998.11a
    • /
    • pp.580-593
    • /
    • 1998
  • The small composite design for second order response surface might be appropriate when experimentation is expensive, difficult, or time-consuming, especially when an independent estimate of experimental error is available. It is important that the small composite designs for response surface analysis would be rotatable and slope-rotatable. Therefore the small composite designs are studied from the viewpoint of rotatability and slope-rotatability, and the optimal values of a(the distance of axial points from the center) are investigated as k(the number of independent variables) and $n_0$(the number of center points) are changed.

  • PDF

Comparison of Organic Matter Dynamics between Natural Deciduous Broad-Leaved Forest and Adjacent Artificial Evergreen Coniferous Forest

  • Takahiro, Ichikawa;Terumasa, Takahashi;Yoshito, Asano
    • The Korean Journal of Ecology
    • /
    • v.27 no.4
    • /
    • pp.217-224
    • /
    • 2004
  • The purpose of this study is to clarify the effects of the conversion of the forest management type from a natural deciduous broad-leaved forest to an artificial evergreen coniferous forest based on organic matter dynamics. We investigated the amounts and carbon contents of the forest floor and the litterfall, soil chemical characteristics and cellulose decomposition rates in the natural deciduous broad-leaved forest and adjacent artificial evergreen coniferous forest. In the artificial evergreen coniferous forest were planted Japanese cypress (Chamaecyparis obtusa) on the upper slope and Japanese cedar (Cryptomeria japonica) on the lower slope. The soil carbon and nitrogen contents, CEC and microbial activity had decreased due to the conversion of the forest management type from a natural deciduous broad-leaved forest to an artificial Japanese cypress forest, and were almost the same for the conversion to a Japanese cedar forest. Under the same conditions, it is considered that the soil fertility was different by planting specific tree species because the organic matter dynamics were changed by them.

The AHP Method to Quantitate Investigation Items of Cut Slope (계층분석과정을 통한 절토사면 조사항목의 정량화)

  • Lee, Jong-Young;Shin, Chang-Gun;Kim, Yong-Soo;An, Sang-Lo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.732-737
    • /
    • 2006
  • The facility diagnosis technique of past subjective judged the technical expert and interpreted stably mainly. The facility the periodical civil official becomes indispensability consequently with the law and the system and objectivity inspection which relates with a this and development of diagnosis technique were necessary. Currently the evaluation elements which relate with an inspection and diagnosis technique depended to the subjectivity of each facility quality, data statistics, diagnosis know-how, various circumstance and the technical expert and the evaluation item came to decide. But the evaluation score distribution of marks of each item depended plentifully in data analysis result and experience. The past method is weak in logically because the objection theoretical background and basis are insufficiency. Consequently in order to apply a data analysis result and an experience logically, it used AHP(Analytic Hierarchy Process) method from this research. It is visible with the fact that the application result reconfirmation and complement process will be necessary the technique which is suitable in the multi facility management. Also it is expected with the fact that the application characteristic from the next relation technique will be excellent.

  • PDF

Case Study of Earth Anchor Axial Force Change Characteristic through Monitoring during Construction Period (시공중 계측을 통한 어스앵커 축력변화 특성사례 연구)

  • Kim, Sung-Wook;Han, Byung-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.285-292
    • /
    • 2004
  • Earth Anchor method as a supporting system is widely used in the large scale deep excavation of urban areas or slope excavation project. Considering the application frequency of that method and catastrophe of that method under unproper construction management, we can find out many problems relevant to the domestic design and construction management of earth anchor method. When we encounter the cases of rapid increments and various decrements in earth anchor axial forces, considering the characteristic of earth anchor method, it is an essential point to catch the reasons and to prepare countermeasures. This article introduces two actual monitoring examples based on the close analyses of measured data in a typical large scale deep excavation project and slope excavation project. One is a rapidly increasing case of earth anchor axial forces with the continuous advance of incremental deformation in a geological layer interface. And another is a decreasing case of earth anchor axial forces with the construction conditions. The effort of this article aims to improve and develop the technique of design and construction in the coming projects having similar ground condition and supporting method.

  • PDF

Tribological approach for the analysis of the pedestrain slipping accident II

  • Kim, Inju
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.662-666
    • /
    • 1996
  • The variations of the surface topographical parameters for the analysis of the pedestrian slip and fall accidents during the sliding friction between the specially prepared floor specimens and three working shoes were investigated. The profile ordinate data for each flooring specimen were obtained at 1.1 .mu.m intervals using a laser scanning confocal microscope system along to the direction of sliding. A number of surface roughness parameters, that is, the centre line average (c.l.a.) and root mean square (r.m.s.) roughness, maximum height (Rtm), maximum mean peak height (Rpm), maximum mean depth (Rvm), and average asperity slope were calculated using a computer program and compared with the dynamic friction results. The analysis showed that the surface parameters undergo marked variations during the sliding process, but the variations were statistically significant. It was found that amongst various surface parameters, the maximum depth (Rvm) and the average asperity slope of the asperities were the biggest variation during the sliding proceeding. This result confirms the previous study and may suggests a new approach to monitoring the flooring environments with their service as the effort to reduce the pedestrain slip accident.

  • PDF

Revision and catagorization of evaluation criteria for state change factors in agricultural reservoirs

  • Jae Woong Shim;Young Hak Lee;Dal Won Lee
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.707-717
    • /
    • 2022
  • As the variability of recent rainfall is increasing, it is becoming important to recognize the possibility of changes in the current reservoir state in advance and to inspect the stability based on accurate evaluation standards. However, the evaluation standards for the state change factors of reservoirs are still not suitable for agricultural reservoirs and thus much improvement is needed. Therefore, in this study, the evaluation criteria for state change factors specialized for small reservoirs were categorized and standards were prepared by considering factors that may cause state changes on the dam crest, upstream slope, and downstream slope of the embankment. The categorized results were configured based on the number of mentions of the precision safety inspection report on major defects in 102 reservoirs and the defect factors found in field investigations. The findings of the study indicated that the current state change standards require many revisions for excessive or unnecessary state change factors in the reservoir. Specifically, the deletion of measurement gauges not applicable to the reservoir, the addition of defects found in the reservoir, and the scope of use of the term were proposed. The results of this study can contribute to efficient system operation and management by improving the deficiencies in the system and introducing a new state change factor.

Assessment of Landslide Causal Factors Using ANN Method (ANN 기법을 이용한 사면 붕괴인자 평가)

  • Song, Young-Karb;Jung, Min-Su;Oh, Jeong-Rim;Cha, A-Reum
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.10
    • /
    • pp.89-96
    • /
    • 2012
  • In this study landslide causal factors which are considered to have the same effect in assessment techniques are categorized and their impact on landslides is analyzed to acquire reasonable weighting factors in the landslide hazard. Results are compared to those of the Assessment Chart developed by National Institute for Disaster Prevention (NIDP) and the adequacy and proper portion for landslide causal factors are considered. The Artificial Neural Network (ANN) method applied to 28 landslide areas is incorporated to evaluate the reasonable rating. Results show that the following items in the Chart are necessary to modify their portions in order to implement the precise assessment results: 1) Estimated damage; 2) Tension crack; 3) Existence of valley.

A Study on Development of Estimation for Discharge Rate Reflecting Water Surface Slope (수면경사를 반영한 하천 유량산정에 관한 연구)

  • Choo, Tai Ho;Hong, Soon Heon;Park, Sang Jin;Kim, Young Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.2
    • /
    • pp.535-542
    • /
    • 2017
  • There is a big difference of discharge rate between drought and flood period in Korea since the importance of water resources management has come to the fore. To know a river characteristics, it needs to estimate river discharge accurately. River discharge is calculated using the measured velocity of cross section and the estimated area of watercourse as input parameters into continuity equation. Generally, flow rate over a river is estimated from the relation equation between level and discharge, in this case, there are weakness for only the equal depths and the equal discharge estimated. In the present study, therefore, water surface slope was estimated using measured water level of Seongseo water level observation station and measured water level using ADVM at Gangchang Bridge. And then, we developed the discharge calculation equation using water surface slope. A method to easily calculated flow rate from the measured depth of the two points that are suggested by reflecting water surface slope because natural stream is unsteady flow, not uniform flow or not steady flow.