• Title/Summary/Keyword: slope geometry

Search Result 147, Processing Time 0.024 seconds

Study of changes in the kinetic parameters of corrosion on the macrocell current induced by the repair of reinforced concrete structures - Results of numerical simulation

  • Mostafa Haghtalab;Vahed Ghiasi;Aliakbar Shirzadi Javid
    • Computers and Concrete
    • /
    • v.32 no.3
    • /
    • pp.287-302
    • /
    • 2023
  • Corrosion of reinforcing bars in reinforced concrete structures due to chloride attack in environments containing chloride ions is one of the most important factors in the destruction of concrete structures. According to the abundant reports that the corrosion rate around the repair area has increased due to the macro-cell current known as the incipient anode, it is necessary to understand the effective parameters. The main objective of this paper is to investigate the effect of the kinetic parameters of corrosion including the cathodic Tafel slope, exchange current density, and equilibrium potential in repair materials on the total corrosion rate and maximum corrosion rate in the patch repair system. With the numerical simulation of the patch repair system and concerning the effect of parameters such as electromotive force (substrate concrete activity level), length of repair area, and resistivity of substrate and repair concrete, and with constant other parameters, the sensitivity of the macro-cell current caused by changes in the kinetic parameters of corrosion of the repairing materials has been investigated. The results show that the maximum effect on the macro-cell current values occurred with the change of cathodic Tafel slope, and the effect change of exchange current density and the equilibrium potential is almost the same. In the low repair extant and low resistivity of the repairing materials, with the increase in the electromotive force (degree of substrate concrete activity) of the patch repair system, the sensitivity of the total corrosion current reduces with the reduction in the cathode Tafel slope. The overall corrosion current will be very sensitive to changes in the kinetic parameters of corrosion. The change in the cathodic Tafel slope from 0.16 to 0.12 V/dec and in 300 mV the electromotive force will translate into an increase of 200% of the total corrosion current. While the percentage of this change in currency density and equilibrium potential is 53 and 43 percent, respectively. Moreover, by increasing the electro-motive force, the sensitivity of the total corrosion current decreases or becomes constant. The maximum corrosion does not change significantly based on the modification of the corrosion kinetic parameters and the modification will not affect the maximum corrosion in the repair system. Given that the macro-cell current in addition to the repair geometry is influenced by the sections of reactions of cathodic, anodic, and ohmic drop in repair and base concrete materials, in different parameters depending on the dominance of each section, the sensitivity of the total current and maximum corrosion in each scenario will be different.

GIS technolgy for analysing regional geologic hazards (Landslides) (광역 지질재해분석(산사태)을 위한 GIS활용)

  • 김윤종;김원영;유일현
    • The Journal of Engineering Geology
    • /
    • v.2 no.2
    • /
    • pp.131-140
    • /
    • 1992
  • GIS(Geographic Information System) technology was applied for analysis of the potential degree of regional geologic hazard, especially landslide hazards in the suburb of Seoul City, whereby a regional geologic hazard map was produced. The factors causing a landslide such as slope geometry, geology, groundwater, soil property, rainfall and vegetation were incorporated through GIS in order to predict the potential hazards in this area. Cartographic simulation was finally made with these factors to produce a regional geologic hazard map. For this study, ARC/INFO and ERDAS systems were used in SUN 4-390 workstation.

  • PDF

The Effect of Flame Radiation on NOx Emission Characteristic in Hydrogen Turbulent Diffusion Flames (수소 난류확산화염에서 NOx 생성특성에 대한 복사분율의 영향)

  • Kim, Seung-Han;Kim, Mun-Ki;Yoon, Young-Bin
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.47-58
    • /
    • 2000
  • The relationship among the flame radiation, NOx emissions, residence time, and global strain rate are examined for turbulent non-premixed jet flames with wide variations in coaxial air conditions. Measurements of NOx emission, flame geometry and flame radiation were made to explain the NOx emission scaling based on global parameters such as flame residence time, global strain rate, and radiant fraction. The overall 1/2-power scaling is observed in coaxial air flames, irrespective of coaxial air conditions, but the degree of deviation from the l/2-slope curve in each case differs from one another. From the comparison between the results of pure hydrogen flames and those of helium diluted hydrogen flames, it is observed that flame radiation plays a significant role in pure hydrogen flames with coaxial air and the deviation from 1/2-power scaling may be explained in two reasons: the difference in the flame radiation and the difference in jet similarity in coaxial air flames. From the radiation measurements, more detailed explanations on these deviations were suggested.

  • PDF

Study on the Aerodynamic Performance of Low Reynolds Airfoils using a Regression Analysis (회귀분석을 이용한 저(低)레이놀즈수 익형 공력성능 연구)

  • Jin, Wonjin
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.3
    • /
    • pp.9-14
    • /
    • 2016
  • Using a multiple regression analysis, a total of 78 low-Reynolds-number airfoils are examined in this paper to clarify the systematic relationships between the geometrical parameters of the airfoils and experimentally-determined aerodynamic coefficients. The results show that the effects of the maximum camber and the maximum thickness regarding the maximum lift and the stalling angle of attack, respectively, are major. The lower-surface flatness of the airfoil is also a crucial geometrical parameter for aerodynamic performance. It is proven here that, generally, the application of the regression equations for an assessment of the aerodynamic performance is relatively acceptable, along with an expectation that the lift-curve slope violates the normality assumption.

Numerical Study of Passive Control with Slotted Blading in Highly Loaded Compressor Cascade at Low Mach Number

  • Ramzi, Mdouki;Bois, Gerard;Abderrahmane, Gahmousse
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.97-103
    • /
    • 2011
  • With the aim to increase blade loadings and stable operating range in highly loaded compressors, this article has been conducted to explore, through a numerical parametric study, the potential of passive control using slotted bladings in cascade configurations. The objective of this numerical investigation is to analyze the influence of location, width and slope of the slots and therefore identify the optimal configuration. The approach is based on two dimensional cascade geometry, low speed regime, steady state and turbulent RANS model. The results show the efficiency of this passive technique to delay separation and enhance aerodynamic performances of the compressor cascade. A maximum of 28.3% reduction in loss coefficient have been reached, the flow turning is increased with approximately $5^0$ and high loading over a wide range of angle of attack have been obtained for the optimized control parameter.

Compact UWB Bandpass Filter as Cascaded Center-Tapped CRLH Transmission-Line ZORs for Improved Stopband

  • Lee, Boram;Kahng, Sungtek;Wu, Qun
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.371-375
    • /
    • 2013
  • The design of a new compact UWB bandpass filter is proposed, which has cascaded center-tapped microstrip composite right/left-handed transmission-line zeroth-order resonators (CRLH-TL ZORs). In an attempt to reduce the size, instead of the conventional half-wavelength resonators or periodic and multiple CRLH-TL cells, only one cell ZOR geometry is adopted as each resonator in the filter. Additionally, two center-tapped ZORs are coupled to increase the slope of the skirt. Besides, stepped impedance matching parts are placed in the paths to the input and output ports to enhance passband and stopband performances. The proposed filter is shown to have the overall size of $0.69{\lambda}_g{\times}0.70{\lambda}_g$, the insertion loss much less than 1 dB, and an acceptable return loss performance in the predicted and measured results.

Analysis of Regional Geologic hazards using GIS (지질재해 분석을 위한 GIS 응용연구)

  • 김윤종;김원영;유일현
    • Spatial Information Research
    • /
    • v.1 no.1
    • /
    • pp.89-94
    • /
    • 1993
  • GIS was appl ied for analysis of the potfnt ial degree of regional geologic hazard, expecially landslide, in the suburb of Seoul city. Potential elements causing a landslide are geology, slope geometry, groundwater, soil property, rainfall and vegetation etc. These factors were incorporated through GIS in order to predict the potential hazards, and to produce a regional geologic hazard map in the study area, For this study, ARC/INFO and ERDAS systems were used in SUN4-390 workstation.

  • PDF

Thermo-elastic stability behavior of laminated cross-ply elliptical shells

  • Patel, B.P.;Shukla, K.K.;Nath, Y.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.6
    • /
    • pp.749-755
    • /
    • 2005
  • In this work, thermo-elastic stability behavior of laminated cross-ply elliptical cylindrical shells subjected to uniform temperature rise is studied employing the finite element approach based on higher-order theory that accounts for the transverse shear and transverse normal deformations, and nonlinear in-plane displacement approximations through the thickness with slope discontinuity at the layer interfaces. The combined influence of higher-order shear deformation, shell geometry and non-circularity on the prebuckling thermal stress distribution and critical temperature parameter of laminated elliptical cylindrical shells is examined.

Finite Element Simulation of a Cross-Wedge Rolling Process Considering Detailed Geometry of Dies (금형의 상세 형상을 고려한 크로스웨지롤링 공정의 유한요소 시뮬레이션)

  • Lee, M.C.;Cho, J.H.;Park, J.H.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.252-255
    • /
    • 2008
  • We conduct finite element simulation of a cross-wedge rolling process using AFDEX 3D. The die is realistically modeled with emphasis on the hatched plicate over the slope or forming region. Coulomb frictional law is used to prevent slip between material and die. Constant shear frictional law is also investigated and it is esmphasized that the constant shear frictional law is improper for cross-wedge rolling simulation.

  • PDF

Shape Design of Initial Section for Non-circular Shaped Mold Spring (비원형 단면을 갖는 금형스프링의 단면설계)

  • Lee, Hyoungwook;Choi, Hwaryong
    • Journal of Institute of Convergence Technology
    • /
    • v.1 no.1
    • /
    • pp.24-28
    • /
    • 2011
  • The purposes of this study are predictions of the changes in the section geometry and determination of the initial cross section so that opposite side in height direction is exactly parallel after coiling process. Finite element analysis is carried out for the calculation of the sectional changes for mold spring item. Analysis results reveal that the slope of the top and bottom sides varies in the range of 5 to 8 degrees and the amount depends on the dimension of the outer diameter. The slopes of the sides should be defined first among design variables.

  • PDF