• Title/Summary/Keyword: slope analysis

Search Result 3,494, Processing Time 0.031 seconds

Analysis of Rock Slope Stability for Natural Slope and Cut Slope of Gneiss Area in Andong, Korea (편마암지역 자연사면.절취사면의 안정성 분석 사례)

  • Kim, Man-Il;Bae, Du-Won;Kim, Jong-Tae;Chae, Byung-Gon;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.17 no.2 s.52
    • /
    • pp.289-297
    • /
    • 2007
  • Slope failure that is occurred by rainfall generates a lot of property damages and loss of lives. Slope stability management and reinforcement countermeasure can be attained through continuous monitoring about various slope types that adjoin in human's life for reducing slope failure from natural and artificial cut slope hazards. The study area is rock slope that is consisted of gneiss, and large scale joint set is ranging by fault activity. This rock mass is exposed during long period and has lithological weathering property of weathered rock or soft rock. In-situ investigation carried out after divide by natural slope and cut slope. As a result, the natural slope appeared to high possibility of planar failure and wedge failure in few joint points that main joint set is formed. On the other hand, slope failure conformation in cut slope was superior only wedge failure occurrence possibility in eight joint points. In result of numerical analysis using SLIDE 2D, the minimum safety factor was analyzed slope stability for cut slope relatively low than natural slope in this study.

Extraction of Information on Road Cutting Slope using RC Helicopter Photographic Surveying System (무선조정 헬리콥터 사진측량시스템을 이용한 절취사면 정보 추출)

  • 이종출;이영도;김진수;조용재
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.217-222
    • /
    • 2004
  • In this study, cutting slope's digital image has acquired by using video camera attached at RC helicopter. Resulted RMSE from image processing was approximately x-direction 0.27m, y-direction 0.23m and z-direction 0.35m. Application of these methods makes it convenient that acquisition of digital image about before and after the construction work of road cutting slope. Also systematical cutting slope's information acquisition will be possible by cutting slope's quantitative and qualitative analysis.

  • PDF

Analytical Verification of the Standard Inclinations of Slope in the Design Criteria (설계기준에 제시된 사면 표준경사에 대한 해석적 검증)

  • Lee, Seung-Hyun;Kim, Byung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.5342-5348
    • /
    • 2014
  • Slope stability analyses were conducted to investigate the limitations of application of the standard inclination of slope and the effects of the berm width on the slope stability. The standard slope inclination could be applied to the basic slope sections that were considered for the analyses, whereas additional slope stability analysis should be performed for the case of considering ground water. A comparison of the factors of safety between the case of installing a berm and the case of letting the grading have an equivalent section area with the case of installing the berm, the factors of safety in the case of installing a berm were greater than those for the case of allowing grading, and the differences between the factors of safety increase with increasing berm width. For all the sections considered in the analyses, the increments of the safety factor were proportional to the width of the berm and those corresponding to the embankment slope and cut slope with a berm width of 7m were 34.5% and 48%, respectively.

Case Study on the Causes for the Failure of Large Scale Rock Mass Slope Composed of Metasedimentary Rocks (변성퇴적암류로 구성된 대규모 암반사면의 붕괴원인 분석에 관한 사례 연구)

  • Park, Boo-Seong;Jo, Hyun;Cha, Seung-Hun;Lee, Ki-Hwan
    • Tunnel and Underground Space
    • /
    • v.16 no.6 s.65
    • /
    • pp.506-525
    • /
    • 2006
  • For the design of large scale rock slope which has complex formations and geological structures, generally, insufficiency of geotechnical investigations and laboratory tests are the main factors of slope failures doling construction. In such case, remedial measures to stabilize slope should be selected and applied through reliable investigations and analysis considering the geotechnical characteristics. The rock slope of this study, one of the largest cut slopes in Korea with a length of 520.0 m and maximum height of 122.0 m consists of metasedimentary rocks. And a case study on the causes of large-scale rock slope failure was carried out by analysis of landslides history and site investigations during construction. When the slope with the original design slope of 0.7: 1.0 (H:V) was partially constructed, the slope failure was occurred due to the factors such as poor conditions of rocks (weathered zone, coaly shale and fault shear zone), various discontinuities (joints, foliations and faults), severe rain storm and so on. The types of failures were rockfall, circular failure, wedge failure and the combination of these types. So, the design of slope was changed three times to ensure long-term slope stability. This paper is intended to be a useful reference for analyzing and estimating the stability of rock slopes whose site conditions are similar to those of this study site such as geological structures and geotechnical properties.

A Relative Study on Safe Factor by Different Analyses of Slope Stability (해석방법에 따른 사면 안전율 비교 연구)

  • An, Joon-Hee;Park, Choon-Sik;Jang, Jeong-Wook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.720-723
    • /
    • 2006
  • This study performed slope stability analysis by changing analysis methods and shear strength with the slope stability analysis program. The conclusions of the study are as follows. 1) The safe factor of clayey soil applied with Bishop's simple method turned out to be similar to or slightly higher than those of other methods, for both dry and saturated conditions. 2) The safe factor of sandy soil applied with GLE method turned out to be slightly higher than those of other methods. But when applied with Bishop's simple method, it appeared to be slightly higher than those of other methods. 3) The safe factor of ordinary soil applied with GLE method showed the highest result. 4) Janbu method showed the lowest safe factor among all the methods for the above three types of soils.

  • PDF

The Effect of Grid Size in a Slope Analysis of Terrain by DEM for Hydrological Analysis (수문해석을 위한 DEM에 의한 지형의 경사도분석에서 격자크기의 영향)

  • 양인태;김연준
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.15 no.2
    • /
    • pp.221-230
    • /
    • 1997
  • In hydrology analysis, the result of a slope analysis for terrain have an very important effect on water quality and water quantity Recently, a slope analysis tend to use the digital elevation model rater than the traditional map sheet. But a terrain slope analysis by the digital elevation model depends on grid size of the digital elevation model. Hence the effect of a slope analysis by the digital elevation model is a important factor. In this study, therefor, in order to determine a hydrological parameter and a terrain parameter for simulation of the water quality and the hydrological property, we adapted two sample area that are the Nerin stream of the basin of the Soyang lake and a Osip stream of Samchuk, and its individual coverages are $640\;km^2$ and $33\;km^2$. Also to analyze the effect of grid size in the slope of a basin, we apply DEM changing a grid size respectively at intervals of 100 m from 100 m to 1.000m for the Nerin stream basin and at intervals of 10 m from 20 m to 300 m for the Osip stream basin.

  • PDF

Development of Seismic Fragility Curves for Slopes Using ANN-based Response Surface (인공신경망 기반의 응답면 기법을 이용한 사면의 지진에 대한 취약도 곡선 작성)

  • Park, Noh-Seok;Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.11
    • /
    • pp.31-42
    • /
    • 2016
  • Usually the seismic stability analysis of slope uses the pseudostatic analysis considering the inertial force by the earthquake as a static load. Geostructures such as slope include the uncertainty of soil properties. Therefore, it is necessary to consider probabilistic method for stability analysis. In this study, the probabilistic stability analysis of slope considering the uncertainty of soil properties has been performed. The fragility curve that represents the probability of exceeding limit state of slope as a function of the ground motion has been established. The Monte Carlo Simulation (MCS) has been implemented to perform the probabilistic stability analysis of slope with pseudostatic analysis. A procedure to develop the fragility curve by the pseudostatic horizontal acceleration has been presented by calculating the probability of failure based on the Artificial Neural Network (ANN) based response surface technique that reduces the required time of MCS. The results showed that the proposed method can get the fragility curve that is similar to the direct MCS-based fragility curve, and can be efficiently used to reduce the analysis time.

3-D Slope Stability Analysis on Influence of Groundwater Level Changes in Oksan Landslide Area (지하수위 변화에 따른 옥산 산사태 지역의 3차원 사면안정성 해석)

  • Seo, Yong-Seok;Kim, Sung-Kwon;Lee, Kyoung-Mi
    • The Journal of Engineering Geology
    • /
    • v.18 no.2
    • /
    • pp.177-183
    • /
    • 2008
  • In the study, we carried out a 3-D analysis to assess the influence of groundwater level changes on the slope stability, conducting a series of back-numerical analysis to delineate the critical line of the shear strength of the failure surface of a landslide, and a laboratory test to determine the geo-mechanical properties of soil samples. The analysis result shows that the shear strength determined by the laboratory test was distributed below the critical line of shear strength estimated by back-analysis. Differences between driving and resisting force were also analyzed in groundwater conditions of dry and saturation. It appeared that the stress gets greater towards the slope center of the landslide, and the debris mass moves downwards. According to the analysis, the factor of safety becomes 1 with the rise of foundwater level up to -0.85 m from the slope surface, while the slope tends to stay stable during dry seasons.

Kinematic Analysis of Plane Failure for Rock Slope Using GIS and Probabilistic Analysis Method (GIS와 확률론적 해석 기법을 기반으로 한 평면파괴의 운동학적 안정성 해석)

  • Lee, Seok Hwan;Park, Hyuck Jin
    • Economic and Environmental Geology
    • /
    • v.47 no.2
    • /
    • pp.121-131
    • /
    • 2014
  • The stability of rock slope is mainly controlled by the orientation and shear strength of discontinuties in rock mass. Therefore, in kinematic analysis, the orientation of the combination of discontinuities and slope face is examined to determine if certain modes of failure can be occurred. In previous kinematic analysis, a representative orientation of the slope face and mean orientation of discontinuity set were used as input parameters. However, since the orientations of slope face varies according to locations of measurement, the representative slope face orientation could cause misunderstanding for kinematic instability. In addition, since the orientations of each discontinuity are scattered in the same discontinuity set, there is the possibility that uncertainties are involved in the procedure of kinematic analysis. Therefore, in this study, the detailed digital topographic map was used to obtain the orientation of slope face. In addition, the probabilistic analysis approach was utilized to deal properly with the uncertainties in discontinuity orientation. The proposed approach was applied to steep slopes in mountain road located in Baehuryeong, Chunncheon city, Gangwon-Do. The analysis results obtained from the deterministic and probabilistic analysis were compared to check the feasibility of proposed the analysis.

Analysis of Influence Factors Related to Failure Characteristics of Excavated Slopes ; A Case of Southern Kyounggi Area along the Nat과l Road (절취 사면의 파괴 특성과 관련된 영향 요인 분석 ; 경기도 남부 국도 사례)

  • 김정환;윤운상;최재원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.277-284
    • /
    • 1999
  • This study describes the influence factors related to slope failure pattern and dimension in the southern Kyounggi area. Intrusive and metamorphic rocks are distributed in the study area. Geological condition, rainfall property and slope geometry are influence on slope failure characteristics in the study we& Geological factors related to slope failure are rock type, geological structure and weathering condition. Because of deep soil (RS-CW) depth of granite region, circular failure type is major failure pattern in granite region. Almost granite slopes with circular or surface failure pattern are failed during heavy rainfall season. But typical wedge failure type related to geological structure factor is a main failure pattern of metamorphic rock slope. Additionally failure dimension is influenced by geological factors and several factors, i.e. natural slope condition, failure type, rainfall intensity and etc. failure height/width ratio and thickness/length ratio of granite slope are 0.88 and 0.23. But the ratios of metamorphic rock slope are 1.36 and 0.19.

  • PDF