• Title/Summary/Keyword: slip surface angle

Search Result 47, Processing Time 0.023 seconds

Influence of Slip Angle on Abrasion Behavior of NR/BR Vulcanizates

  • Eunji Chae;Sung-Seen Choi
    • Elastomers and Composites
    • /
    • v.58 no.1
    • /
    • pp.17-25
    • /
    • 2023
  • Abrasion tests of model tire tread compounds (NR and NR/BR blend compounds) were performed at different slip angles (1° and 7°) using a laboratory abrasion tester. The abrasion behavior was investigated by analyzing the worn surface and wear particles. The abrasion spacing formed on the specimen worn at the large slip angle of 7° was significantly narrower than that at the small slip angle of 1°, while the abrasion depth for the specimen worn at 7° was lower than that at 1°. The abrasion spacing and depth tended to be narrower and lower, respectively, as the BR content increased. The abrasion patterns were clearly visible on the outside of the specimen for the slip angle of 1° but not for 7°. The wear particles had a rough surface and there were numerous micro-bumps. It was found that the crosslink density affected the abrasion patterns and morphologies of the wear particles.

Study on Earth Pressure Acting Against Caisson Structure with the Heel (뒷굽이 있는 케이슨 안벽에 작용하는 토압에 대한 연구)

  • Yoo, Kun-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.2
    • /
    • pp.67-76
    • /
    • 2017
  • In this study, the effect of caisson heel on the active earth pressure is investigated. Using limit analysis method, inclinations of slip surface developed above the heel with different lengths are analyzed. The shorter the heel length, the larger those of inside slip surface, however those of outside slip surface are not changed. According to the relative heel length, relationships of internal friction angle of backfill material - wall friction angle between caisson structure and backfill - friction angle acting on virtual section at the end of heel are presented. Earth pressures acting against caisson structure with relatively short heel are smaller than Rankine earth pressure but always greater than Coulomb earth pressure which does not consider the heel length.

3D numerical investigation of segmental tunnels performance crossing a dip-slip fault

  • Zaheri, Milad;Ranjbarnia, Masoud;Dias, Daniel
    • Geomechanics and Engineering
    • /
    • v.23 no.4
    • /
    • pp.351-364
    • /
    • 2020
  • This paper numerically investigates the effects of a dip-slip fault (a normal or a reverse fault) movement on a segmental tunnel which transversely crosses either of this kind of faults. After calibration of the numerical model with results from literature of centrifuge physical tests, a parametric study is conducted to evaluate the effects of various parameters such as the granular soil properties, the fault dip angle, the segments thickness, and their connections stiffnesses on the tunnel performance. The results are presented and discussed in terms of the ground surface and tunnel displacements along the longitudinal axis for each case of faulting. The gradient of displacements and deformations of the tunnel cross section are also analyzed. It is shown that when the fault dip angle becomes greater, the tunnel and ground surface displacements are smaller, in the case of reverse faulting. For this type of fault offset, increasing the tunnel buried depth causes tunnel displacements as well as ground surface settlements to enhance which should be considered in the design.

Calculation of Failure Load of V-shaped Rock Notch Using Slip-line Method (Slip-line법을 이용한 V형 암석 노치의 파괴하중 계산)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.404-416
    • /
    • 2020
  • An analytical procedure for calculating the failure load of a V-shaped rock notch under two-dimensional stress conditions was developed based on the slip-line plastic analysis method. The key idea utilized in the development is the fact that the α-line, one of the slip-lines, extends from the rock notch surface to the horizontal surface outside the notch when the rock around the notch is in the plastic state, and that there exists an invariant which is constant along the α-line. Since the stress boundary condition of the horizontal surface outside the rock notch is known, it is possible to calculate the normal and shear stresses acting on the rock notch surface by solving the invariant equation. The notch failure load exerted by the wedge was calculated using the calculated stress components for the notch surface. Rock notch failure analysis was performed by applying the developed analytical procedure. The analysis results show that the failure load of the rock notch increases with exponential nonlinearity as the angle of the notch and the friction of the notch surface increase. The analytical procedure developed in this study is expected to have applications to the study of fracture initiation in rocks through wedge-shaped notch formation, calculation of bearing capacity of the rock foundation, and stability analysis of rock slopes and circular tunnels.

Friction Drag Reduction using Microstructured Surfaces (마이크로 구조를 이용한 유체 표면마찰의 감소)

  • Park, Chi-Yeol;Bae, Seung-Il;Lee, Sang-Min;Ko, Jong-Soo;Chung, Kwang-Hyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.12
    • /
    • pp.117-122
    • /
    • 2009
  • The hexagonal network-type PDMS microstructures were fabricated and they were employed to low-friction drag surfaces. While the lowest contact angle measured from the smooth surface was $108^{\circ}$ the highest contact angle measured from the microstructured surfaces was $145^{\circ}$ The moving speed of bullet-type capsule attached with a PDMS pad of smooth surface ($CA=108^{\circ}$) was 0.1261 m/s and that with a PDMS pad of microstructured surface ($CA=145^{\circ}$) was 0.1464 m/s. Compared with the smooth surface, the microstructured surface showed 16.1% higher moving speed. The network-type microstructures have a composite surface that is composed with air and PDMS solid. Therefore, the surface does not wet: rather water is lifted by the microstructures. Because of the composite surface, water shows slip-flow on the microstructures, and thus friction drag can be reduced.

Analysis and Optimization of Design Parameters in a Cold Cross Rolling Process using a Response Surface Method (반응표면법을 이용한 냉간전조압연공정 설계변수의 영향도 분석 밑 설계최적화)

  • Lee, H.W.;Lee, G.A;Choi, S.;Yoon, D.J.;Lim, S.J.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.550-555
    • /
    • 2006
  • In this study, effects of forming angle and friction coefficient on a initiation of the Mannesmann hole defect were analyzed by using a response surface method. The maximum effective plastic strain at center point of specimen is utilized for the prediction of the starting point of crack occurrence, which is suggested by the comparison of integrals of four different ductile fracture models between the histories of the effective plastic strain at center point. It was revealed that the principal stress at the center is the dominant element to the increase of the effective plastic strain. It was also verified by the simulation results from the comparison of experiment and simulation. It is provided that the forming angle of 25 degrees and the spreading angle of 1 degree can be a proper design condition without an occurrence of internal hole defect and an excessive slip.

The Incipient Deformation Analysis for Plane Strain Open-Die Forging Processes with V-shaped Dies Using the Force Balance Method (힘평형법을 이용한 V-형다이 평면변형 자유형 단조공정의 초기변형 해석)

  • Lee, J.H.;Kim, B.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.109-117
    • /
    • 1993
  • Force balance method is employed to predict forging information such as forging load, tool pressure and normal stress at the surface of tangential velocity discontinuity. The incipient stages of deformation for the plane strain forging of rectangular billets in V-shaped dies of different semi-angles are analysed. To construct an approximate model for the analysis of deformation by the force balance method in the incipient deformation stages, slip-line field is used. When the deformation mode by slip-line method is the same as that by force balance method, the slip-line method and the force balance method give identical solutions. The effects of die angle, coefficient of friction, billet geometries and deforma- tion characteristics are also investigated. In order to verify the validity of force balance analysis, the rigid-plastic finite element simulation for the various forgig parameters are performed and performed and find to be in good agreement.

  • PDF

Analysis of Contact Stiffness and Bending Stiffness according to Contact Angle of Curvic Coupling (곡률 커플링 접촉각에 따른 접촉 강성 및 굽힘 강성해석)

  • Yu, Yonghun;Cho, Yongjoo;Lee, Donghyun;Kim, Young-Cheol
    • Tribology and Lubricants
    • /
    • v.34 no.1
    • /
    • pp.23-32
    • /
    • 2018
  • Coupling is a mechanical component that transmits rotational force by connecting two shafts. Curvic coupling is widely used in high-performance systems because of its excellent power transmission efficiency and easy machining. However, coupling applications change dynamic behavior by reducing the stiffness of an entire system. Contact surface stiffness is an important parameter that determines the dynamic behavior of a system. In addition, the roughness profile of a contact surface is the most important parameter for obtaining contact stiffness. In this study, we theoretically establish the process of contact and bending stiffness analysis by considering the rough surface contact at Curvic coupling. Surface roughness parameters are obtained from Nayak's random process, and the normal contact stiffness of a contact surface is calculated using the Greenwood and Williamson model in the elastic region and the Jackson and Green model in the elastic-plastic region. The shape of the Curvic coupling contact surface is obtained by modeling a machined shape through an actual machining tool. Based on this modeling, we find the maximum number of gear teeth that can be machined according to the contact angle. Curvic coupling stiffness is calculated by considering the contact angle, and the calculation process is divided into stick and slip conditions. Based on this process, we investigate the stiffness characteristics according to the contact angle.

Static and seismic active lateral earth pressure coefficients for c-ϕ soils

  • Keshavarz, Amin;Pooresmaeil, Zahra
    • Geomechanics and Engineering
    • /
    • v.10 no.5
    • /
    • pp.657-676
    • /
    • 2016
  • In this paper, the active lateral earth pressure is evaluated using the stress characteristics or slip line method. The lateral earth pressure is expressed as the lateral earth pressure coefficients due to the surcharge, the unit weight and cohesion of the backfill soil. Seismic horizontal and vertical pseudo-static coefficients are used to consider the seismic effects. The equilibrium equations along the characteristics lines are solved by the finite difference method. The slope of the ground surface, the wall angle and the adhesion and friction angle of the soil-wall interface are also considered in the analysis. A computer code is provided for the analysis. The code is capable of solving the characteristics network, determining active lateral earth pressure distribution and calculating active lateral earth pressure coefficients. Closed-form solutions are provided for the lateral earth pressure coefficients due to the surcharge and cohesion. The results of this study have a good agreement with other reported results. The effects of the geometry of the retaining wall, the soil and soil-wall interface parameters are evaluated. Non-dimensional graphs are presented for the active lateral earth pressure coefficients.