• 제목/요약/키워드: slip distance

검색결과 98건 처리시간 0.029초

각가속도 변화에 의해 탐지된 슬립에 기반한 주행로봇의 견인력 제어 (Traction Control of Mobile Robot Based on Slippage Detection by Angular Acceleration Change)

  • 최현도;우춘규;강현석;김수현;곽윤근
    • 제어로봇시스템학회논문지
    • /
    • 제15권2호
    • /
    • pp.184-191
    • /
    • 2009
  • The common requirements of rough terrain mobile robots are long-term operation and high mobility in rough terrain to perform difficult tasks. In rough terrain, excessive wheel slip could cause an increase in the amount of dissipated energy at the contact point between the wheel and ground or, even more seriously, the robot could lose all mobility and become trapped. This paper proposes a traction control algorithm that can be independently implemented to each wheel without requiring extra sensors and devices compared with standard velocity control methods. The proposed traction algorithm is analogous to the stick-slip friction mechanism. The algorithm estimates the slippage of wheels by angular acceleration change, and controls the increase or decrease state of torque applied to wheels Simulations are performed to validate the algorithm. The proposed traction control algorithm yielded a 65.4% reduction of total slip distance and 70.6% reduction of power consumption compared with the standard velocity control method.

백터계산을 이용한 단층의 이동량 산출법 (A Simple Vector Calculation Method for the True Failt Displacement Distance)

  • 황상기
    • 자원환경지질
    • /
    • 제32권4호
    • /
    • pp.365-371
    • /
    • 1999
  • Ture diplacement of a fault monement is calculated from the displacement of the index plane such as bedding on an outcrop surface. The input parameters are the orientations of the index, fault, and outcrop planes. It is also necessary to input the orientation of fault striation and the offset distance of the index plane on the outcrop surface. The distances of the total, strike, horizontal and dip slip components of the fault movement are calculated from the input parameters. Hwang(1998) conducted a simlar calculation using trigonoment method. To apply the previous method, the offset distance of the index plane must be measured on a vertical outcrop surface. The calculation method of this study accepts the offset distence of index plane on an outcrop plane of any orientation. Calculation results from both method are indentical, regardless of the simplicity of the new method.

  • PDF

평면 사면의 점진적 파괴에 관한 수치해석 (Numerical Analysis on Progressive Failure of Plane Slopes)

  • 송원경;권광수
    • 터널과지하공간
    • /
    • 제7권1호
    • /
    • pp.31-38
    • /
    • 1997
  • Residual shear strength should be taken into consideration as well as peak one when analysing stability of slopes constituted by weathered rock or overconsolidated soils since such materials could be subjected to progressive failure mechanism. When landslide of a slope is related to progressive failure phenomenon, the failure might occur even though shear strength of the slope materials does not reach their residual shear strength over the whole slip surface. Therefore, stability of the slope concerned may be overstimated or underestimated when using only its peak or residual shear srength parameters. Mechanical description for progressive failure phenomenon is given by Bjerrum(1967). In parameters. Mechanical description for progressive failure phenomenon is given by Bjerrum(1967). In this study, his theory has been extended to estimate the distance of failed zone for a plane slope and the results calculated by this extended equatio has been compared with that obtained by numerical modelling using FLAC. In addition, stress state on the slip surface has been, in detail, analysed to understand failure mechanism when a limited progressive failure occurs. Effects of mechanical and hydraulic factors on progressive failure have also been analysed.

  • PDF

자율 주행 이동 로봇의 슬립을 고려한 횡방향 임피던스 힘제어에 대한 연구 (Studies of Lateral Impedance Force Control for an Autonomous Mobile Robot with Slip)

  • 하천장;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제12권2호
    • /
    • pp.161-167
    • /
    • 2006
  • In this paper, lateral force control of a mobile robot with slip is presented. First, the bicycle model of a mobile robot is derived for the front steering. Second, impedance force control algorithm is applied to regulate contact force with environment. The desired distance is specified conservatively inside the environment to guarantee to make contact. Different stiffness of environment has been tested for force tracking task. Simulation results show that the proposed control algorithm works well to maintain desired contact force on the environment.

변단면 슬립폼 공법 적용을 위한 콘크리트의 응결 특성 비교 (Comparison of Concrete Setting Properties for the Application of Tapered Slip-Form method)

  • 송용순;양우용;정길수;서영화
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2010년도 춘계 학술대회 제22권1호
    • /
    • pp.459-460
    • /
    • 2010
  • 이순신 대교 변단면 주탑에 압송관을 이용한 슬립폼 공법을 적용하기 위해서는 공사기간 중 점차 추워지는 날씨와 압송거리 증가에 따른 콘크리트 초기응결특성 변화에 대한 고려를 하지 않으면 안 된다. 또한 급격한 변단면 구간이나 가로보 연결부 등에서 의도적으로 속도를 지연시키기 위한 계획적인 초결시간 변화가 가능해야 한다. 이 연구에서는 OPC, S/C, OPC와 S/C 혼합 및 저발열 시멘트를 이용한 배합시험을 통해 시멘트의 종류, 혼화제, 대기온도에 따른 콘크리트 초기응력특성을 관찰하였다.

  • PDF

A Study on the ECU and Control Algorithm of ABS for a Commercial Vehicle

  • Lee, Ki-Chang;Kim, Mun-Sub;Jeon, Jeong-Woo;Hwang, Don-Ha;Park, Doh-Young;Kim, Yong-Joo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.166.1-166
    • /
    • 2001
  • Anti-lock Braking System(ABS) is a device which prevents the wheels form locked up under emergency braking of a vehicle. So it helps the vehicle to maintain the steerability and shortens the braking distance by maintaining optimal frictional force during braking since the tire road slip is controlled in acceptable range. Recently, ABS is accepted as a standard equipment in vehicles, especially in commercial vehicles(bus and trucks). Commercial vehicles don´t use hydraulic lines but use pneumatic lines for braking system mostly. In this paper, ECU(Electronic Control Unit) for the anti-lock braking system of a commercial vehicle which is equipped with a full-air brake system and its control algorithms are presented. In this algorithm wheel speed acceleration flags and wheel slip flags are defined ...

  • PDF

Experimental and numerical studies on mechanical behavior of buried pipelines crossing faults

  • Zhang, Dan F.;Bie, Xue M.;Zeng, Xi;Lei, Zhen;Du, Guo F.
    • Structural Engineering and Mechanics
    • /
    • 제75권1호
    • /
    • pp.71-86
    • /
    • 2020
  • This paper presents a study on the mechanical behavior of buried pipelines crossing faults using experimental and numerical methods. A self-made soil-box was used to simulate normal fault, strike-slip fault and oblique slip fault. The effects of some important parameters, including the displacement and type of fault, the buried depth and the diameter of pipe, on the deformation modes and axial strain distribution of the buried pipelines crossing faults was studied in the experiment. Furthermore, a finite element analysis (FEA) model of spring boundary was developed to investigate the performance of the buried pipelines crossing faults, and FEA results were compared with experimental results. It is found that the axial strain distribution of those buried pipelines crossing the normal fault and the oblique fault is asymmetrical along the fault plane and that of buried pipelines crossing the strike-slip fault is approximately symmetrical. Additionally, the axial peak strain appears near both sides of the fault and increases with increasing fault displacement. Moreover, the axial strain of the pipeline decreases with decreasing buried depth or increasing ratios of pipe diameter to pipe wall thickness. Compared with the normal fault and the strike-slip fault, the oblique fault is the most harmful to pipelines. Based on the accuracy of the model, the regression equations of the axial distance from the peak axial strain position of the pipeline to the fault under the effects of buried depth, pipe diameter, wall thickness and fault displacement were given.

Relationship to the superficial radial nerve and anatomic variations of the first extensor compartment in Thai population: a basis for successful de Quervain tenosynovitis treatment

  • Krittameth Pasiphol;Sithiporn Agthong;Napatpong Thamrongskulsiri;Sirikorn Dokthien;Thanasil Huanmanop;Tanat Tabtieng;Vilai Chentanez
    • Anatomy and Cell Biology
    • /
    • 제57권2호
    • /
    • pp.246-255
    • /
    • 2024
  • Knowledge of the superficial radial nerve (SRN) relationship and anatomic variations of the first extensor compartment (1st EC) will contribute to a better outcome of de Quervain tenosynovitis treatment. We dissected 87 embalmed cadaveric wrists to determine the relationship of the SRN, the 1st EC length, distance from the proximal and distal 1st EC borders to radial styloid process (RSP), abductor pollicis longus (APL) and extensor pollicis brevis (EPB) tendon slip numbers, and the presence of septum. Our results revealed SRN crossing over the 1st EC in 59.5%. The lateral branch of the superficial radial nerve to the 1st EC midline in most cases (61.9%) except for one specimen, where lateral antebrachial cutaneous nerve was the closest. Distances from proximal and distal 1st EC borders to the RSP were 19.7±4.1 mm and 7.6±1.8 mm, respectively. Extensor retinaculum (ER) width over 1st EC (1st EC length) was 14.8±3.2 mm. Complete and incomplete septa were found in 17.2%, and 42.5%, respectively. The most frequent APL tendon slip number in the compartment was two in overall 47 specimens (54.0%). Almost all compartments (85 specimens; 97.7%) contained one EPB tendon slip. We detected bilateral EPB absence in one cadaver. Moreover, we recorded a tendon slip from extensor pollicis longus traveling into 1st EC bilaterally in one cadaver and observed the EPB muscle belly extension into 1st EC in 9 wrists. Awareness of 1st EC anatomic variations would be essential for successful surgical and nonsurgical outcomes.

Lumbar spine 의 뼈와 Interbody cage의 접촉면에서 기계공학적 민감성 고찰 (The Mechanical Sensitivity at Interfaces between Bone and Interbody Cage of Lumbar Spine Segments)

  • 김용
    • 대한의용생체공학회:의공학회지
    • /
    • 제21권3호
    • /
    • pp.295-301
    • /
    • 2000
  • 뼈의 성장에 미치는 많은 요소들 중에서 implant의 상대적인 미세운동(relative micromotion)은 뼈의 implant와의 접합을 방해하는 것으로 알려져 왔다. 그런데 이러한 상대적인 운동 및 spinal stability에 직접적으로 영향을 주는 하중조건, spinal material의 물성치, spinal geometry 및 뼈와 implant의 접촉면에서의 마찰계수를 고려하기 위하여, 하나의 titanium interbody cage 가 삽입된 human lumbar segments (L4-L5)의 유한요소 모델이 개발되었다. 이러한 유한요소 모델의 해석을 통하여 상대적인 미세운동, Posterior의 수직적인 변위, von Mises 응력 및 마찰력이 예측되었다. Cancellous bone. annulus fibers 및 ligaments의 기계적인 물성치의 감소 또는 접촉면에서의 마찰계수의 감소는 상대적인 미세운동 (relative micromotion or slip distance)을 증가 시켰다. 접촉면에서의 normal force는 뼈의 밀도 (cancellous bone density) 가 감소하거나 접촉마찰계수가 증가하면 감소했다. 특히 하중조건에 있어서, compressive preload에 대한 torsion의 추가는 접촉면의 anterior부위에서 상대적인 미세운동을 증가 시켰다. 하지만 디스크면적이 증가할수록 상대적인 미세운동은 감소했다. 결론적으로, 접촉면의 기계공학적 거동 (Relative micromotion, stress response, posterior axial displacement and contact normal force)은 접촉면의 마찰계수 뼈의 밀도, 하중조건 및 노화에 따른 형상/물성의 변화에 매우 민감함을 보이고있다.

  • PDF

바닥의 위치가 Vortex Vent의 배기성능에 미치는 영향 (Effect of the Floor on the Ventilation Performance of the Vortex Vent)

  • 이진원;임영복
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.154-158
    • /
    • 2009
  • The vortex ventilation system (VV) which uses a rotating finned swirler installed coaxially with the exhaust duct is a very effective local ventilator. VV can enhance the capture depth by a factor of 3-5 compared to the conventional exhaust hood, in the absence of any solid walls nearby. In real situations there may exist ceiling, side wall and floor, all of which can affect the flow field and suction performance by way of the no-slip condition on the walls. 3D CFD simulation was performed in order to see the effect of the floor on the capture performance of the VV. The presence of floor reduced suction flow velocity, and increased the critical rotational speed which is the rotational speed required for stable vortex formation. Flow velocity profile along the axis could be well approximated by a universal functional form when the distance from the exhaust inlet is non-dimensionalized by the distance to the floor. Capture depth, define by the distance from the exhaust inlet to a point of velocity decreased to 10% of that at the inlet, is reduced by about 10% when the floor distance is 6 times the exhaust hood diameter.

  • PDF