• 제목/요약/키워드: slip capacity

검색결과 209건 처리시간 0.021초

실규모 현장시험을 통한 부착형 암반앵커의 인발저항력 평가 (Uplift Capacity Estimation of Bond-type Rock Anchors Based on Full Scale Field Tests)

  • 김대홍;오기대
    • 한국지반공학회논문집
    • /
    • 제25권10호
    • /
    • pp.5-15
    • /
    • 2009
  • 본 논문에서는 옥천 및 창녕지역에서 총 24회 수행한 암반앵커 현장인발시험의 결과를 나타내었다. 시험앵커의 정착깊이는 1~6m로 서로다른 암반내에 설치하였다. 앵커의 대부분은 고강도 이형철근인 SD40-D51mm를 사용함으로써 다른 파괴가 일어나기 전에 암반파괴가 먼저 일어나도록 유도하여 암반의 인발저항력을 파악하고자 하였으며, 일부에서는 SD40-D32mm앵커를 설치하여 앵커의 파괴도 아울러 살펴보았다. 많은 시험에서 파괴는 항복에 이르는 극한하중까지 관찰할 수 있었으며, 암반파괴형상은 암반이 들어올려지면서 방사상으로 균열이 발달하는 형태를 나타내었다. 또한 시멘트그라우트와 텐던사이의 부착강도를 평가하고자 방식쉬이스가 설치된 앵커에 대해 실내실험을 실시하였다. 실험결과 텐던-그라우트 사이의 부착강도는 그라우트 일축압축강도의 18~25%로 나타났으며, 방식쉬이스에 의한 부착력 감소는 무시할 수 있을 정도로 작게 나타났다.

평수구역을 운항하는 여객선의 차량고박 기준에 관한 연구 (A Study on Lashing Standards for Car Ferry Ships Sailing in Smooth Sea Areas)

  • 강병선;정창현;김득봉
    • 해양환경안전학회지
    • /
    • 제26권1호
    • /
    • pp.1-7
    • /
    • 2020
  • 차량 및 화물 고박불량과 횡경사에 따른 화물의 이동으로 인한 여객선 침몰사고 이후 화물 고박의 중요성이 제기되었고 카페리선박의 구조 및 설비 등에 관한 기준이 개정되어 풍속 7 m/sec, 파고 1.5미터를 초과하는 해상상태에서는 평수구역을 운항하는 카페리여객선에 적재된 모든 차량은 고박을 실시해야 한다. 본 연구에서는 평수구역을 운항하는 여객선의 해상상태에 따른 선체운동을 계측하고 NSM(New Strip Method) 계산 결과와 비교 하였으며, 대상선박은 풍속 6 ~ 8 m/s, 파고 0.5 ~ 1.0미터의 해상상태에서 최대 1.41° 및 1.37°의 종 동요와 횡 동요를 하였고, 풍속 10 ~ 12 m/s, 파고 1.0 ~ 1.5미터의 해상상태에는 최대 1.49° 및 2.43°의 종 동요와 횡 동요를 하였다. 선체운동 결과를 반영하여 외력과 지지력을 비교해 본 결과 고박하지 않은 상태의 지지력이 더 강한 것으로 평가되어 해당 기상조건에서는 고박을 하지 않아도 차량이 미끄러지거나 전도되지 않는 것으로 평가되었다. 향후 다양한 선박의 선체운동 측정, 외력 및 지지력 비교를 통해 보다 합리적인 차량고박 기준 개정이 요구된다.

드래프트 관이 장착된 교반기 내의 유동 및 혼합특성 연구 (Flow and Mixing Characteristics in an Agitator with a Draught Tube)

  • 황정훈;김윤제
    • 한국유체기계학회 논문집
    • /
    • 제10권1호
    • /
    • pp.56-63
    • /
    • 2007
  • Because the mixing efficiency is influenced remarkably by varying the geometrical configurations, the study of flow characteristics inside the mechanical agitator is very important to improve the performances. The draught tube in the agitator makes intermixing between the screw and tube by interrupting radial flow, and it makes circulation region in a mixing chamber. In general, the helical screw agitator with a draught tube (HSA) is proved more efficient to mix than the others. Consequently, such as the shapes of helical screw, number of pitches and the variation of angular velocity are the main parameters for improving the capacity of HSA. And also the suspension of the solid particles in the agitator can be determined these parameters. The rate of solids suspension in the mixing chamber was quantified with a statistical average value, of. Numerical analyses were carried out, using a commercial CFD code, Fluent, to obtain the velocity, pressure and particle distributions under steady, laminar flow and no-slip conditions. Results are graphically depicted with various parameters.

팔라듐에서의 변형 및 수소흡수거동에 미치는 형상 및 가공의 영향 (Effect of Geometrical shape and Cold work on Deformation and Hydrogen absorption behaivor in Palladium)

  • 정영관;김경훈;김세웅
    • 한국수소및신에너지학회논문집
    • /
    • 제12권4호
    • /
    • pp.247-255
    • /
    • 2001
  • The relation between the deformation and the geometrical shape, and the effect of cold work on the hydrogen absorption behavior in palladium were investigated. The Pd specimens used were plates and wires as cold worked and annealed states. The palladium plates and wires were loaded with hydrogen by electrochemical method. Experimental analyses were carried out through X -ray diffraction, micrometer measurement and decimal balance measurement. As the results, it is found that the effect of cold work on hydrogen absorption capacity was relatively small. The deformation of the palladium plates in thickness direction is larger than in other lateral directions whereas the palladium wires showed the same deformation ratio in all radius directions because of the circular distribution of coexisting $\alpha$ and $\beta$ phases. The products of plastic deformation such as slip lines and voids etc. were observed abundantly in all specimens although the specimens had undergone only once of a hydrogen absorption and desorption.

  • PDF

Refined damage prediction of low-rise building envelope under high wind load

  • Pan, F.;Cai, C.S.;Zhang, W.;Kong, B.
    • Wind and Structures
    • /
    • 제18권6호
    • /
    • pp.669-691
    • /
    • 2014
  • Since low-rise residential buildings are the most common and vulnerable structures in coastal areas, a reliable prediction of their performance under hurricanes is necessary. The present study focuses on developing a refined finite element model that is able to more rigorously represent the load distributions or redistributions when the building behaves as a unit or any portion is overloaded. A typical 5:12 sloped low-rise residential building is chosen as the prototype and analyzed under wind pressures measured in the wind tunnel. The structural connections, including the frame-to-frame connections and sheathing-to-frame connections, are modeled extensively to represent the critical structural details that secure the load paths for the entire building system as well as the boundary conditions provided to the building envelope. The nail withdrawal, the excessive displacement of sheathing, the nail head pull-through, the sheathing in-plane shear, and the nail load-slip are found to be responsible for the building envelope damage. The uses of the nail type with a high withdrawal capacity, a thicker sheathing panel, and an optimized nail edge distance are observed to efficiently enhance the building envelope performance based on the present numerical damage predictions.

Retrofitting reinforced concrete beams by bolting steel plates to their sides -Part 2: Transverse interaction and rigid plastic design

  • Oehlers, Deric John;Ahmed, Marfique;Nguyen, Ninh T.;Bradford, Mark Andrew
    • Structural Engineering and Mechanics
    • /
    • 제10권3호
    • /
    • pp.227-243
    • /
    • 2000
  • In a companion paper, tests on bolted side plated beams have shown that side plates can substantially increase the strength of existing reinforced concrete beams with little if any loss of ductility and, furthermore, induce a gradual mode of failure after commencement of concrete crushing. However, it was also shown that transverse interaction between the side plates and the reinforced concrete beam, that is vertical slip and which is a concept unique to side plated beams, is detrimental. Transverse interaction increases the forces on the bolt shear connectors and, hence, weakens the beam. It also reduces the ability of the composite plated beam to yield and, hence, to attain its full flexural capacity. The generic concept of transverse interaction will be described in this paper and the results used to develop a new form of rigid plastic analysis for bolted side plated beams which is illustrated with an application.

이방향성 회전 직교축 모델을 이용한 철근콘크리트 면부재의 비선형 유한요소해석 (Nonlinear Finite Element Analysis of Reinforced Concrete Planar Members Using Rotating Orthotropic Axes Model)

  • 박홍근
    • 전산구조공학
    • /
    • 제8권4호
    • /
    • pp.117-127
    • /
    • 1995
  • 이 연구의 목적은 단조하중과 반복하중을 받는 철근콘크리트 면부재 해석에 대한 이방향성 회전 직교축 모델의 성능을 검토하기 위함이다. 여기서 다루는 구조부재는 철근에 의하여 적절히 보강된 보, 기둥, 보-기둥 접합부, 그리고 전단벽등으로 부재의 파괴가 인장균열후 압축파괴에 의하여 일어나는 부재이다. 보통 단조하중에 대하여 사용도는 이방향성 회전 직교축 모델을 반복하중에 대하여 확장하며, 철근과 부착의 기존 재료모델과 함꼐 유한요소해석에 사용한다. 단조하중에 대하여 이방향성 회전 직교축 모델을 사용한 해석 결과는 취성파괴를 나타내는 철근콘크리트보의 실험결과와 비교된다. 또한 반복하중을 받는 전단벽의 극한하중, 비선형 변형, 핀칭 현상 등에 대하여 실험결과와 비교된다.

  • PDF

Numerical simulation of concrete slab-on-steel girder bridges with frictional contact

  • Lin, Jian Jun;Fafard, Mario;Beaulieu, Denis
    • Structural Engineering and Mechanics
    • /
    • 제4권3호
    • /
    • pp.257-276
    • /
    • 1996
  • In North America, a large number of concrete old slab-on-steel girder bridges, classified noncomposite, were built without any mechanic connections. The stablizing effect due to slab/girder interface contact and friction on the steel girders was totally neglected in practice. Experimental results indicate that this effect can lead to a significant underestimation of the load-carrying capacity of these bridges. In this paper, the two major components-concrete slab and steel girders, are treat as two deformable bodies in contact. A finite element procedure with considering the effect of friction and contact for the analysis of concrete slab-on-steel girder bridges is presented. The interface friction phenomenon and finite element formulation are described using an updated configuration under large deformations to account for the influence of any possible kinematic motions on the interface boundary conditions. The constitutive model for frictional contact are considered as slip work-dependent to account for the irreversible nature of friction forces and degradation of interface shear resistance. The proposed procedure is further validated by experimental bridge models.

The secondary excited induction generator in random wave input system

  • Kim, Moon-Hwan
    • Journal of information and communication convergence engineering
    • /
    • 제7권2호
    • /
    • pp.209-214
    • /
    • 2009
  • The employment of the induction generator is preferable in the natural energy utilization by the minimum maintenance and the mechanical robustness, Another merit is also expected when it is connected to the power network system, because constant-voltage and constant frequency (CVCF) power generation is easily realized in spite of the variation of the rotor speed. However the induction generator needs much amount of the reactive power that reduces power factor in the primary side. The improvement of power factor in the primary side requires large VAR compensator, this point is solved, the merit of the induction machine as a main generator will become more established. This paper proposes a novel approach where the secondary is controlled by a PWM inverter not only to get CVCF power but also to improve the primary power factor. Basically the inverter is controlled so that the field current is supplied from the secondary side in this approach. The required capacity of the inverter is small, because only the slip power is controlled in the secondary side. In the experimental system where the sea wave torque simulator is used, the power factor is well improved by the microcomputer controlled PWM inverter.

연약지반에서의 말뚝기초의 설계 (Design of Pile Foundations in Soft Deposits)

  • 김주형;권오성;김명모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.49-56
    • /
    • 2005
  • The negative skin friction on piles, which are installed in currently consolidating soft deposits, creates significant problems on the stability of pile foundations. This study investigated whether or not the pile foundation designs were appropriate in soft deposits with large amount of consolidation settlement. The final settlements of the grounds along the pile depth were estimated by the soil parameters obtained from the laboratory tests and by the field-measured settlement curves, if they were available. The displacement of the piles along the pile depth was estimated by both the load transfer method and the numerical method. Both methods gave similar locations of neutral points and magnitudes of the maximum axial forces. The movements of the ground and the piles were compared to calculate the down drag acting on piles. For the piles whose bearing capacities were less than the design loads including the down drag, slip layer coatings and/or incrementing of the penetration depth into the bearing stratum were proposed to improve the piles capacities.

  • PDF