• 제목/요약/키워드: sliding time

검색결과 824건 처리시간 0.028초

시간지연 제어와 슬라이딩모드 제어기법을 이용한 불확실한 동적 시스템의 강인 제어기 설계 (Robust Controller Design for Uncertain Dynamic System Using Time Delay Control and Sliding Mode Control Method)

  • 박병석;이인성;윤지섭;강이석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.225-225
    • /
    • 2000
  • We propose the hybrid robust controller for TDC(Time Delay Control) and SMC(Sliding Mode Control) method. TDC and SMC deal with the time-varying system parameters, unknown dynamics and unexpected disturbance. This controller is applied to follow the desired reference model for the uncertain time-varying overhead crane. The control performance is evaluated through simulation. The theoretical results indicate That the proposed controller shows excellent performance to an overhead crane with the uncertain time-varying parameters and disturbance.

  • PDF

비선형 슬라이딩 평면을 이용한 슬라이딩 제어 (The Sliding Control using Nonlinear Sliding Surfaces)

  • 한종길
    • 한국전자통신학회논문지
    • /
    • 제7권5호
    • /
    • pp.1133-1138
    • /
    • 2012
  • 본 논문은 최적제어에 기초하여 비선형 슬라이딩 평면을 설계하는 것이다. 최적제어입력에 의한 상태 궤적을 Frobenius 정리와 matrix decomposition 방법에 의해 구하였고, 이 궤적을 시스템의 슬라이딩 평면으로 설정하였다. 상태는 초기부터 슬라이딩 평면을 유지하며, 그 결과 초기상태 단계로부터 전 영역까지 시스템의 강인성은 보장 받을 수 있으며, 도달시간 동안 발생 될 수 있는 불확실성과 외란의 영향을 제거되고, 큰 제어 입력의 문제도 해결할 수 있었다. 그리고 최적경로를 슬라이딩 평면으로 설정함으로 추적시간을 줄일 수 있었다. 역진자 시스템을 사용하여 그 타당성을 보인다.

비선형 슬라이딩 면을 이용한 온수난방 순환펌프 시스템의 온도 제어 (Temperature control for a hot water heating circulating pump system using a nonlinear sliding surface)

  • 안병천;장효환
    • 제어로봇시스템학회논문지
    • /
    • 제3권2호
    • /
    • pp.162-168
    • /
    • 1997
  • Digital variable structure controller(DVSC) is implemented to control the temperature for the hot water heating circulating pump control system. For the DVSC, a control algorithm is suggested, which using a nonlinear sliding surface and a PID sliding surface outside and inside of steady state error boundary layer, respectively. Smith predictor algorithm is used for the compensation of long dead time. The DVSC of the suggested algorithm yields improved control performance compared with the one of existing algorithm. The system responses with the suggested DVSC shows good responses without overshoot and steady state error inspite of heating load change. By decreasing sampling time, dead time and rise time are increasing, and system output noise by flow dynamics is amplified.

  • PDF

시변 스위칭 평면을 이용한 로보트 매니퓰레이터의 견실한 제어기의 설계 (A Robust Controller Design for Manipulators using Time-Varying Sliding Manifolds)

  • 박귀태;김동식;임성준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1990년도 추계학술대회 논문집 학회본부
    • /
    • pp.391-395
    • /
    • 1990
  • A new control algorithm is developed to achieve the robust performance of the system during the overall control process. Time-varying sliding manifolds are proposed to remove the reaching phase which is one of common shortcomings of variable structure control scheme. A necessary and sufficient condition for the existence of a sliding mode on the newly proposed time-varying sliding mode on the newly proposed time-varying sliding manifolds is derived by Lyapunov's second method. The digital simulation results show that the newly proposed control algorithm is superior to the typical variable structure control algorithm with respect to the robust performance of the system. The simplicity of the proposed control algorithm encourages control engineers to implement the proposed control algorithm in many control problems.

  • PDF

Finite-Time Convergent Guidance Law Based on Second-Order Sliding Mode Control Theory

  • Ji, Yi;Lin, Defu;Wang, Wei;Lin, Shiyao
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권4호
    • /
    • pp.697-708
    • /
    • 2017
  • The complex battlefield environment makes it difficult to intercept maneuvering targets for guided missiles. In this paper, a finite-time convergent (FTC) guidance law based on the second-order sliding mode (SOSM) control theory is proposed to achieve the requirements of stability, accuracy and robustness. More specifically, a second-order sliding mode observer (SMOB) is used to estimate and compensate for the total disturbance of the controlled system, while the target acceleration is extracted from the line-of-sight (LOS) angle measurement. The proposed guidance law can drive the LOS angular rate converge to zero in a finite time, which means that the missile will accurately intercept the target. Numerical simulations with some comparisons are performed to demonstrate the superiority of the proposed guidance law.

비선형 퍼지 슬라이딩면을 이용한 가변구조 제어기의 설계 (Design of a Variable Structure Controller Using Nonlinear Fuzzy Sliding Surfaces)

  • 이희진;손홍엽;김은태;조영환;박민용
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 추계학술대회 학술발표 논문집
    • /
    • pp.449-452
    • /
    • 1997
  • In this paper, we suggest a variable structure controller using the time-varying nonlinear sliding surface instead of the fixed sliding surface, which has been the robustness against parameter variations and extraneous disturbance during the reaching phase. As appling TS fuzzy algorithm to the regulation of the nonlinear sliding surface, the reaching time of the system trajectory is faster than the fixed method . This proposed scheme has better performance than the conventional method in reaching time parameter variation and extraneous disturbance. To demonstrate its performance, the proposed control algorithm is applied to a rotational inverted pendulum.

  • PDF

로봇 머니퓰레이터에서의 수렴속도 향상을 위한 적분 슬라이딩 모드 기반 적응 시간 제어 기법 (Adaptive Time-delayed Control with Integral Sliding-mode Surface for Fast Convergence Rate of Robot Manipulator)

  • 백재민;강민석
    • 대한임베디드공학회논문지
    • /
    • 제16권6호
    • /
    • pp.307-312
    • /
    • 2021
  • This paper proposes an adaptive time-delayed control approach with the integral sliding-mode surface for the fast convergence rate of robot manipulators. Adaptive switching gain aims to guarantee the system stability in such a way as to suppress time-delayed estimation error in the proposed control approach. Moreover, it makes an effort to increase the convergence ability in reaching the phase. An integral sliding-mode surface is employed to achieve a fast convergence rate in the sliding phase. The stability of the proposed one is proved to be asymptotically stable in the Lyapunov stability. The efficiency of the proposed control approach is illustrated with a tutorial example in robot manipulator, which is compared to that of the existing control approach.

입력 신호의 크기에 제한을 갖는 2차 시스템에 대한 슬라이딩 모드 제어기의 슬라이딩 평면의 설계 (Design of Sliding Surface of a Sliding Mode Controller for a Second Order System with Input Saturation)

  • 한소희;손성한;박강박
    • 제어로봇시스템학회논문지
    • /
    • 제10권11호
    • /
    • pp.1095-1099
    • /
    • 2004
  • In this paper, a novel sliding surface is proposed to guarantee that the sliding mode controller for a second order system produces a control signal whose magnitude is always within the bound of input saturation. The proposed sliding surface uses a time-varying function, and its time derivative works to make a control signal within the bounds of input saturation. Simulation results are presented to show the effectiveness of the proposed method.

A Nonlinear Sliding Mode Controller for IPMSM Drives with an Adaptive Gain Tuning Rule

  • Jung, Jin-Woo;Dang, Dong Quang;Vu, Nga Thi-Thuy;Justo, Jackson John;Do, Ton Duc;Choi, Han Ho;Kim, Tae Heoung
    • Journal of Power Electronics
    • /
    • 제15권3호
    • /
    • pp.753-762
    • /
    • 2015
  • This paper presents a nonlinear sliding mode control (SMC) scheme with a variable damping ratio for interior permanent magnet synchronous motors (IPMSMs). First, a nonlinear sliding surface whose parameters change continuously with time is designed. Actually, the proposed SMC has the ability to reduce the settling time without an overshoot by giving a low damping ratio at the initial time and a high damping ratio as the output reaches the desired setpoint. At the same time, it enables a fast convergence in finite time and eliminates the singularity problem with the upper bound of an uncertain term, which cannot be measured in practice, by using a simple adaptation law. To improve the efficiency of a system in the constant torque region, the control system incorporates the maximum torque per ampere (MTPA) algorithm. The stability of the nonlinear sliding surface is guaranteed by Lyapunov stability theory. Moreover, a simple sliding mode observer is used to estimate the load torque and system uncertainties. The effectiveness of the proposed nonlinear SMC scheme is verified using comparative experimental results of the linear SMC scheme when the speed reference and load torque change under system uncertainties. From these experimental results, the proposed nonlinear SMC method reveals a faster transient response, smaller steady-state speed error, and less sensitivity to system uncertainties than the linear SMC method.

A Global Optimal Sliding-Mode Control for the Minimum Time Trajectory Tracking with Bounded Inputs

  • Choi, Hyeung-sik
    • Journal of Mechanical Science and Technology
    • /
    • 제15권4호
    • /
    • pp.433-440
    • /
    • 2001
  • A new design of the sliding mode control is proposed for the uncertain linear time-varying second order system. The proposed control drives system states to the target point in the minimum time with specified ranges of parametric uncertainties and disturbances. One of the advantages of the proposed control scheme is that the control inputs do not go beyond saturation limits of the actuators. The other advantage is that the minimum arrival time and the acceleration of the second order actuators system can be estimated with given parametric bounds and can be expressed in the closed from; conversely, the designer can select actuators based on the condition of the minimum arrival time to the target point. The superior performance of the proposed control scheme to other sliding mode controllers is validated by computer simulations.

  • PDF