• 제목/요약/키워드: sliding mode control with perturbation estimation

검색결과 15건 처리시간 0.036초

RLSN 예측기 기반 섭동 추정기를 갖는 슬라이딩 모드 제어 (Sliding Mode Control with RLSN Predictor-Based Perturbation Estimation)

  • 남윤주;이육형;박명관
    • 대한기계학회논문집A
    • /
    • 제30권8호
    • /
    • pp.880-888
    • /
    • 2006
  • This paper presents the sliding mode control with the perturbation estimator for a nonlinear control system in the presence of perturbations including external disturbances, unpredictable parameter variations, ana unstructured dynamics. The proposed perturbation estimator is based on the Recursive Linear Smoothed Newton predictive algorithm so that it is effective to attenuate an undesired noise in high frequency band and to predict the present perturbation signal from the previous ones. Compared to conventional sliding mode control (SMC) and sliding mode control with perturbation estimation (SMCPE) introduced by Elmali and Olgac, the control algorithm proposed in this study can offer better tracking control performances and more feasible estimation characteristics. The effectiveness and superiority of the proposed control strategy are demonstrated by a series of simulations on the position tracking control of a simple two-link robot manipulator subject to velocity feedback signals including white noises.

Fractional-Order Hold기법을 이용한 섭동 추정기의 슬라이딩 모드 제어에 적용 (Application of Perturbation Estimation using Fractional-Order Hold Technique to Sliding Mode Control)

  • 남윤주;이육형;박명관
    • 한국정밀공학회지
    • /
    • 제23권1호
    • /
    • pp.121-128
    • /
    • 2006
  • This paper deals with the application of enhanced perturbation estimation (SMCEPE) to sliding mode control of a dynamic system in the presence of perturbations including external disturbances, unpredictable parameter variations, and unstructured dynamics. Compared to conventional sliding mode control (SMC) and sliding mode control with perturbation estimation (SMCPE), the proposed one can offer robust control performances under serious control conditions, such as fast dynamic perturbations and slow loop-closure speeds, without a priori knowledge on upper bounds of perturbations. The perturbation estimator in SHCEPE also has more adaptability owing to the fractional-order hold technique. The effectiveness and superiority of the proposed control strategy are demonstrated by a series of simulations on the position tracking control of a two-link robot manipulator.

Sliding Mode Control with Fuzzy Adaptive Perturbation Compensator for 6-DOF Parallel Manipulator

  • Park, Min-Kyu;Lee, Min-Cheol;Yoo, Wan-Suk
    • Journal of Mechanical Science and Technology
    • /
    • 제18권4호
    • /
    • pp.535-549
    • /
    • 2004
  • This paper proposes a sliding mode controller with fuzzy adaptive perturbation compensator(FAPC) to get a good control performance and reduce the chatter, The proposed algorithm can reduce the chattering because the proposed fuzzy adaptive perturbation compensator compensates the perturbation terms. The compensator computes the control input for compensating unmodeled dynamic terms and disturbance by using the observer-based fuzzy adaptive network(FAN) The weighting parameters of the compensate. are updated by on-line adaptive scheme in order to minimize the estimation error and the estimation velocity error of each actuator. Therefore, the combination of sliding mode control and fuzzy adaptive network gives the robust and intelligent routine to get a good control performance. To evaluate the control performance of the proposed approach, tracking control is experimentally carried out for the hydraulic motion platform which consists of a 6-DOF parallel manipulator.

시간지연추정제어기에 관한 리뷰 (Review on controllers with a time delay estimation)

  • 이효직;윤지섭
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1120-1124
    • /
    • 2005
  • We reviewed controllers with a time delay estimation in this paper. Time delay control (TDC) and sliding mode control (SMC) are well known robust control schemes. Basically, the TDC has a main characteristic called a time delay estimation from which we can estimate the total uncertainty of a system. . The TDC causes the stick-slip in the case of systems with a friction. The so-called TDCSA which are short for TDC with switching action was developed to reduce the stick-slip. The TDC has the additional switching action term in the TDC structure. In the other hand, the SMC dose not have a time delay estimation but instead it can estimate the system uncertainty through the switching action. The SMC has a difficulty to estimate the total uncertainty of a system because it does not have a time delay estimation. In order to solve the difficulty, some control schemes were developed. Among them, we need to focus our attention on two control schemes: SMCPE and SMCTE, which are short for sliding mode control with a perturbation estimation and sliding mode control with a time delay estimation, respectively. In this paper, we analyzed and compared the characteristic of above three controllers. Even though the motives for the development of three control schemes are different, three control schemes have much in common in terms of their controller structures.

  • PDF

외란 관측기를 가지는 슬라이딩모드 제어기 설계 (Design of Siding Mode Controller with Peturbation Estimation)

  • 김낙인;이종원
    • 대한기계학회논문집A
    • /
    • 제24권4호
    • /
    • pp.866-873
    • /
    • 2000
  • Sliding mode control(SMC) incorporated with perturbation compensation is developed here to reduce the low-frequency tracking error in the presence of wide-band frequency perturbations for a nonlinear dynamic system. The control scheme is designed for estimation of low frequency perturbations with employment of the Time Delay Control and low-pass filter. It is shown that the SMC with perturbation compensation is far superior to the conventional SMC in tracking control of the dynamic systems under model uncertainties and external disturbance conditions.

The Design of Sliding Model Controller with Perturbation Estimator Using Observer-Based Fuzzy Adaptive Network

  • Park, Min-Kyu;Lee, Min-Cheol;Go, Seok-Jo
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권2호
    • /
    • pp.117-123
    • /
    • 2001
  • To improve control performance of a non-linear system, many other reserches have used the sliding model control algorithm. The sliding mode controller is known to be robust against nonlinear and unmodeled dynamic terms. However, this algorithm raises the inherent chattering caused by excessive switching inputs around the sliding surface. Therefore, in order to solve the chattering problem and improve control performance, this study has developed the sliding mode controller with a perturbation estimator using the observer-based fuzzy adaptive network. The perturbation estimator based on the fuzzy adaptive network generates the control input of compensating unmodeled dynamics terms and disturbance. And the weighting parameters of the fuzzy adaptive network are updated on-line by adaptive law in order to force the estimation errors converge to zero. Therefore, the combination of sliding mode control and fuzzy adaptive network gives rise to the robust and intelligent routine. For evaluation control performance of the proposed approach, tracking control simulation is carried is carried out for the hydraulic motion simulator which is a 6-degree of freedom parallel manipulator.

  • PDF

개선된 슬라이딩 모드제어기를 이용한 스튜워트플렛폼의 추종제어 (Tracking Control of Stewart Platform Manipulator via Enhanced Sliding Mode Control)

  • 김낙인;이종원
    • 한국자동차공학회논문집
    • /
    • 제9권4호
    • /
    • pp.166-175
    • /
    • 2001
  • The high speed tracking control of a 6-6 Stewart platform manipulator (SPM) normally requires knowledge of its complex full dynamics and measurement of its base motion when the SPM operates on a motion nit. In this study, an enhanced sliding mode control scheme has been developed, which is based on the reduced dynamics, not necessitating measurement of the base motion. The enhanced sliding mode control implemented with the perturbation compensation and modified reaching phase alleviation functions has been successfully employed for high speed tacking control of the laboratory SPM, when it is subjected to a virtual base motion.

  • PDF

The Design of Sliding Mode Controller with Perturbation Estimator Using Observer-Based Fuzzy Adaptive Network

  • Park, Min-Kyu;Lee, Min-Cheol;Go, Seok-Jo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.506-506
    • /
    • 2000
  • To improve control performance of a non-linear system, many other researches have used the sliding mode control algorithm. The sliding mode controller is known to be robust against nonlinear and unmodeled dynamic terms. However. this algorithm raises the inherent chattering caused by excessive switching inputs around the sliding surface. Therefore, in order to solve the chattering problem and improve control performance, this study has developed the sliding mode controller with a perturbation estimator using the observer-based fuzzy adaptive network generates the control input for compensating unmodeled dynamics terms and disturbance. And, the weighting parameters of the fuzzy adaptive network are updated on-line by adaptive law in order to force the estimation errors to converge to zero. Therefore, the combination of sliding mode control and fuzzy adaptive network gives rise to the robust and intelligent routine. For evaluating control performance of the proposed approach. tracking control simulation is carried out for the hydraulic motion simulator which is a 6-degree of freedom parallel manipulator.

  • PDF

Robust Sliding Mode Controller Design for the Line-of-Sight Stabilization

  • Kim, Moon-Sik;Yun, Jung-Joo;Yoo, Gi-Sung;Lee, Min-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.614-619
    • /
    • 2004
  • The line-of-sight (LOS) stabilization system is a precision electro-mechanical gimbals assembly for rejecting vibration to isolate the load from its environment and point toward the target in a desired direction. This paper describes the design of gimbals system to reject the disturbance and to improve stabilization. To generate movement commands for the actuators in the stabilization system, the control system uses a sensor of angular rotation. The controller is a DSP with transducer and actuator interfaces. Unknown parameters of the gimbals are estimated using the signal compression method. The cross-correlation coefficient between the impulse response from the assumed model and the one from model of the gimbals is used to obtain the better estimation. And SMCPE (sliding mode control with perturbation estimation) is used to control the gimbals. SMCPE provides robustness of the control against the modeling deficiencies and unknown disturbances. In order to compare the performance of SMCPE with the classical SMC, a sample test result is presented.

  • PDF

원격해체 작업을 위한 유압 시스템의 SPO 기반 반력 추정 및 힘 반향 양방향 원격제어 (SPO based Reaction Force Estimation and Force Reflection Bilateral Control of Cylinder for Tele-Dismantling)

  • 차금강;윤성민;이민철
    • 로봇학회논문지
    • /
    • 제12권1호
    • /
    • pp.1-10
    • /
    • 2017
  • For dismantling heavy structure under special environment in radioactivity, there are many problems which should be tele-operated and feedback a cutting force for cutting a thick structure such as concrete. When operator dismantles a thick heavy concrete structure, it is in sufficient to judge whether robot is contacting or not with environment by using only vision information. To overcome this problem, force feedback and impedance model based bilateral control are introduced. The sliding mode control with sliding perturbation observer (SMCSPO) based bilateral control is applied and surveyed to a single rod hydraulic cylinder in this paper. The sliding mode control is used for robustness against a disturbance. The sliding perturbation observer is used for estimation of a reaction force such as cutting force. The bilateral control is executed using the information of reaction force estimated by SMCSPO. The contribution of this paper is that the estimation method and bilateral control of the single rod hydraulic cylinder are introduced and discussed by experiment.