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The Design of Sliding Mode Controller with Perturbation
Estimator Using Observer-Based Fuzzy Adaptive Network

Min-Kyu Park, Min-Cheol Lee, and Seok-Jo Go

Abstract: To improve control performance of a non-linear system, many other researches have used the sliding mode control
algorithm. The sliding mode controller is known to be robust against nonlinear and unmodeled dynamic terms. However, this
algorithm raises the inherent chattering caused by excessive switching inputs around the sliding surface. Therefore, in order
to solve the chattering problem and improve control performance, this study has developed the sliding mode controller with
a perturbation estimator using the observer-based fuzzy adaptive network. The perturbation estimator based on the fuzzy adaptive
network generates the control input for compensating unmodeled dynamics terms and disturbance. And, the weighting parameters
of the fuzzy adaptive network are updated on-line by adaptive law in order to force the estimation errors to converge to zero.
Therefore, the combination of sliding mode control and fuzzy adaptive network gives rise to the robust and intelligent routine.
For evaluating control performance of the proposed approach, tracking control simulation is carried out for the hydraulic motion
simulator which is a 6-degree of freedom parallel manipulator.

Keywords: sliding mode control, perturbation estimator, observer-based fuzzy adaptive network, weighting parameter, hydraulic
motion simulator, 6-degree of freedom parallel manipulator

L. Introduction

Sliding mode control is very attractive method for
nonlinear systems [1]-[3]. It has been confirmed as an
effectively robust control approach for nonlinear systems
against parameters and load variations. However, some
bounds on system uncertainties must be estimated in order
to guarantee the stability of the closed-loop system, and its
implementation in practice will cause a inherent chattering
problem, which is undesirable in application. To overcome
these demerits, many researches are carried out. Lee and
Aoshima [4] proposed a sliding mode control algorithm with
two dead zones for reducing the chattering. However, this
algorithm could not completely reduce the inherent
chattering which was caused by excessive switching inputs
around the sliding surface. And, Choi and Kim [5] proposed
a fuzzy sliding mode control algorithm which was designed
to reduce the inherent chattering of the sliding mode control
by using the fuzzy rules. However, the number of inference
rules and membership functions of the fuzzy-sliding mode
controller should be determined only through the trial and
error method by an expert who had the knowledge of
systems.

Fuzzy control is the most effective method using expert
knowledge without the parameters and structure of the
nonlinear systems [6]. However, it is difficult to design and
analyze the adequate fuzzy rules. Therefore, many
researches have been carried out to optimize parameters of
the fuzzy system. The neuro-fuzzy system [7] such as
ANFIS (Adaptive Network based Fuzzy Inference System)
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is representative method [8]. The neuro-fuzzy system is
obtained by embedding the fuzzy inference system into the
framework of artificial neural network.

So, this study has developed the sliding mode controller
with perturbation estimator using observer-based FAN
(Fuzzy Adaptive Network). This control algorithm is
designed to solve the chattering problem of a sliding mode
control and select the adequate fuzzy parameters. The
perturbation estimator generates the control input for
compensating unmodeled dynamic terms and disturbance
using the observer-based FAN. The weighting parameters of
the observer based FAN are updated on-line by adaptive law
in order to force the estimation errors to converge to zero.
Therefore, the combination of sliding mode control and
FAN (Fuzzy Adaptive Network) gives rise to the robust and
intelligent routine. For evaluating control performance of the
proposed approach, tracking control simulation is carried out
for the hydraulic motion simulator which is a 6-degree of
freedom parallel manipulator [9].

II. Observer based fuzzy adaptive network
1. System modeling
The dynamic equation of a nonlinear system with
n-degree of freedom can be written as follow:

yz)

Fig. 1. Structure of observer based FAN.
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where, x=[X,, -, X,]7 is the state vector, and
X;=[x; z]7. The term f(x) and b,(x) correspond to

the elements of system matrix and those of control gain
matrix, respectively, and these terms are the known values.

The A4f(x) and 4bi(x) are uncertainties of f(x) and
b;( x), respectively. And, d{# is the disturbance and ;

is the control input. Perturbation is defined as the
combination of all the uncertainties of Eq. (1).

i

iz D) = 4D+ [l Dul+d(n @)
2. Sliding state observer

The control task is to drive the state towards a desired
state in spite of these perturbations. It is assumed that the
perturbations are upper bounded by a known continuous
function of the states. A sliding state observer for SISO
(single input single output) system is a robust observer
which estimates the state of a nonlinear system. The state
space representation of a second order SISO system is as
follows:

X1 = x 3)
% = Ax)+b(ut+ARx)+ A(x)u+ d(d
y=x

where, x=[x; x,] is the state vector. The observer task

is to estimate the state x in despite of the uncertainties.
The sliding state observer is presented by Eq. (4) [10].

X, = ,;C\z_klsdt( %1)—'01 }1 (4)

522 = f(;)‘!'b( ;)u—kzsgn( 21)"02 .9}1

where ki, k;, a,, a, are positive number and %= x,—x;
is the estimation position error. Throughout the text, " ™"

refers to estimation errors whereas "~ " symbolizes the
estimated quantity. Using Eqs. (3) and (4), the estimation
error dynamics are Eq. (5).

.7;1 = iz—klsat( %1)_01 }1 (5)
Xy = —kosgn( ) —ay X, — ¥

where, ¥ is defined in Eq. (2) and the each difference
(F7=AD—Ax) and b= x)—b(x)) is assumed to be
part of the uncertainty 4f and 4b of Eq. (2) respectively.
3. Description of fuzzy adaptive network

The fuzzy system consists of some fuzzy rules and a
fuzzy inference system [11][12]. The fuzzy inference system
uses the fuzzy rules to perform a mapping from an input
linguistic vector z=[z; z; -+ z,] € R" to an output
linguistic variable y € R. The ith fuzzy IF-THEN rule is
written as Eq. (6).
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RY :if 2 is Aj and z,is A} and -~ z, is A}
then y is B’ (6)

where Ai, A4, A, and B are fuzzy sets.
Firstly, ¢; is calculated by using product inference of

Eq. (7). Secondly, fuzzy basis value ( ¢ ;) is obtained by

using normalization process of Eq. (8). Finally, the output
of fuzzy logic system can be obtained by using singleton
defuzzifier of Eq. (9) [12].

¢;=1II}-, #A;(Zi) @)
b=t ®
:,

wW2)= 4 49;'715;': 0 Z ®

where, 4 4{z;) is membership function value of the fuzzy
variable ( z;), % is the number of the total fuzzy IF-THEN
rules, 0T=[c91,492,-~,<9h] is adjustable parameter vector,

and é=[ ¢, &y, 4] is fuzzy basis vector. The
fuzzy logic approximator based on neural networks can be
established [8]. Fig. 1 shows the configuration of the FAN.
This network has five layers. At layer 1, nodes represent the
values of the membership function of total linguistic
variables. Usually, bell-shaped membership function is
widely used. At layer 2, every node in this layer multiplies
the incoming signals and sends the product result. At layer
3, every node in this layer calculates the fuzzy basis using
normalization process. The ith node calculates the ratio of
the ith rule's firing strength to the sum of all rules' firing
strengths. At layer 4, every node including weighting factor
(adjustable parameter) multiplies the fuzzy basis. At layer 5,
the single node in this layer computes the overall output as
the summation of all incoming signals.

4. Perturbation estimator using observer based FAN

In this section, our task is to use the FAN to approximate
the perturbation function ( #) in Eq. (2), and develop an
adaptive control law to adjust the parameters of the FAN
for the purpose of forcing the estimation error and
estimation velocity error to converge to zero.

Fig. 2 shows the perturbation estimator using the
observer based FAN. Input variables are estimation position
and velocity and output variable is the estimated
perturbation. The perturbation function is presented by Eq.

(10).
T(D= 6" ¢( % (10)

The adaptive law for updating adjustable parameters is
chosen as Eq. (11). b

0=—Aw;x F+w,x %) (2 (1D

where @, and w, are weighting factors, and y is learning

constant.
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Fig. 2. Perturbation estimator using observer based FAN.

Therefore, a new perturbation estimator is proposed by
combination the sliding state observer and FAN. The new
observer structure can be achieved by Eg. (12).

él = 22“]61 Sat( .%1)‘_01 9}1
%= AD+UDu—ksgn( )~ 5+ T (12)
T= 0"3(2
Therefore, the new observer error dynamics become Eq.
13).
.9?1 = %2_klsat( %1)_01 ZN" (13)
;‘2 = —kzsgn( %1)_02 %1—’¢'
If the estimated perturbation value converges to the true
perturbation value, the new observer structure (Eq. 12, and
13) is a better than a general state observer (Eq. 4, and 5)
because this observer with perturbation estimator improves

estimation accuracy of the states. And, it provides an
on-line perturbation estimation scheme by using the FAN.

IT1. Sliding mode control with perturbation
estimator
In this section, a sliding mode controller with the
perturbation estimator is designed. The estimation sliding
function is defined as Eq. (14).

~

§ = eitc; e (14)

where, ¢; is the desired control bandwidth and always
positive, 2;= %,— 4 is the estimation position error and
[x14 %1417 is the desired motion cue for the jth degree of
freedom. The actual sliding function is presented by Eq.
(15).
§; = €,+ C; e; (15)
where e (=x,—x ) is the actual position error.
The control input ( #;) of Eq. (1) is selected by using
time derivative of the Lyapunov function candidate be given

by §; s<0 to satisfy the boundary layer attraction

condition.
A desired s; is selected as Eq. (16) [13].

:S‘\j:_Kj Sat( §,) (16)
where, K; is positive constant, and sat( §,—) is defined as

sat( §;) = { 1S i) §)=e
' it | si]<e;

sat( s;) is effectively used for anti-chatiering problem.
g; is small constant as the boundary layer of sliding mode.
Using the results of previous sections such as Eq. (10),

(11), and (12), it is possible to compute control input as Eq.
(7).

u= —l};( D= F(D—K; sakl 5)— (kyjle)) 7

+[k2j/5j+ Cj(ku/f?j)”(kli/&/)z] -’;1/‘*' 721dj (17)
—cf '7?2)'_ "Cldj)_ @f}

To summarize, Fig. 3 shows the overall scheme of the
sliding mode control with perturbation estimator using
observer based FAN proposed in this study.
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Fig. 3. Sliding mode control with perturbation
estimation using observer based FAN.

IV. Control simulation

This section presents the simulation results of the
proposed sliding mode control with perturbation estimator
using the observer based FAN. To evaluate performance of
the proposed approach, tracking control simulation is carried
out for the hydraulic motion simulator which is a Stewart
platform manipulator.
1. Modeling of Stewart platform

The dynamic equation of the Stewart platform
considering all inertia effect is known to be very difficult to
derive. Lebret derived the dynamic equation using the
Lagrange method and virtual work principle [14]. This
equation can be written as Eq. (18).

MKq) a+Cpla, Da+ Ga)=Fa)"Up (18)

g=[x,v,2,a, 85, 7] is coordinates vector of the upper
centroid; a, B,y are the rotational angles about the x,y,z
axes. Mu(g)e RS % is the inertia matrix, Cxgq, g)=R%"®

corresponds to the centrifugal and Coriolis forces matrix,
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Gp{g)e R¥! is the gravity force vector, KqgeR*® is
Jacobian matrix, and Up(g)< R¥*? is cylinder force vector.
After some algebraic operation( /=/fg) and kinematic

transformation, Eq. (18) can be expressed as Eq. (19).

ZT/IP((Z) I+ CP(Q, (I) I+ CP(CI)= Up (19)

b3 b4 b
Fig. 4. Coordinate system of Stewart platform.

where, Mp; Cp Gp are derived as follows:

Me()=7 @ M] (a)
Crla, D=7 (DML T W) +] (@) Cla, DT ()
Gr()=] (@ Ga

where, =[], 5,1, 1,15 1]) is cylinder length vector.

The cylinder dynamic equation is high order nonlinear
equation. Assuming nonlinear part acts as a disturbance to
the model, simple linear dynamics is obtained such as Eq.
(20).

MAI+CAI+ Up=stUA (20)

M, is the summation of equivalent masses of all the
translational part in the cylinder. C, is the equivalent
damping coefficient. Ky is a spool constant. Therefore, the

complete nominal dynamic equation of the Stewart platform
system including the manipulator and cylinder dynamics
becomes (21).

M)+ Cila, @l+Ga)=KsyUy 21n

where, Mr= Mp+Ms, Cr= Cp+Ca Gr= Gp(@.
After separating linear element and nonlinear element in
Eq. (21), this equation can be re-expressed as Eq. (22).

MTLZ+ CTLZ+ qr:stUA (22)

My and Cpy are the summation of all linear terms in
My and Cy. The perturbation term ¥ is the summation of
the nonlinear terms of inertia moments, the Coriolis and

centrifugal force, the gravity force, and the friction force.
And, M, and Cp; are estimated by the modified signal
compression method [15].
2. Control simulation

A simple tracking control is performed to check the
proposed control algorithm. The tuned sliding state observer
parameters of Eq. (12) ky, ky, @, and @, are 0.12, 2.4,
3, and 5, respectively. And, the tuned control parameters of
Eq. (17) ¢, K, are ¢; are 20, 40, and 0.002, respectively.
The structure of perturbation estimator using the observer
based FAN is a 2-6-9-9-1 system as shown in Fig. 2. The
input variables are estimation cylinder position and velocity
and output variable is the estimated perturbation. Here, the
observer based FAN has 6 membership functions which are
the bell shapes as Eq. (23) and Eq. (24).

#ar=11+0( 5+1/0.5%%% 23)
#a=1/1+[( /0.5%>%
pay=11+[( ,~1/0.5)%>%

#ar=1/1+1(C 5+1/0.5°1% 24
#ar=1/1+0( 1,/0.5)71*%
#ar=1/1+0C 5—-1/0.5>7®

Input variables of the observer based FAN are a
normalized estimation position and velocity. The range of
values for these variables is from -1 to 1. And, a learning
constant ( ) of Eq. (11) in on-line learning paradigm is set
as 0.95. And the tuned weighting parameters (w,, w,) are
20 and 100, respectively.

The payload of the Stewart platform is about 250kg. The
sampling time interval for control is selected by 10msec
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Fig. 5. Reference position trajectories.
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Fig. 6. Reference velocity trajectories.
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Fig. 7. The position errors by the conventional SMC.
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Fig. 8. The velocity errors by the conventional SMC.

because the response frequency of servo-valve is 100Hz.

The reference position and velocity trajectory are shown
in Fig. 5.and 6. The results of control simulation using the
conventional sliding mode control are shown in Fig. 7 and
Fig. 8. The conventional sliding mode control law is
presented by Eq. (25) [16].

u,~=——K,< S(Zf( Sj)_C,' €,+ Zdj (25)

Here, [ is desired acceleration trajectories. The peak error

is about {0mm and the chattering occurs. The simulation
results of the proposed sliding control algorithm are shown
in Fig. 9 ~ Fig. 14. Fig. 9 and Fig. 10 show position error
and velocity error for each cylinder. Fig. 11 and Fig. 12
show estimation position errors and velocity errors,
respectively. And, Fig. 13 and Fig. 14 show actual
perturbation and estimation perturbation for each cylinder.
Fig. 14 shows that the proposed perturbation estimator using
observer based FAN is rapidly converged to actual
perturbation. In first stage of Fig. 9 and Fig. 10, peak
position and velocity errors occur, because estimation
velocity error of Fig. 10 is so large for 0.2sec. However,
estimation errors and velocity errors are much smaller, as
the estimated perturbation values obtained by using the
observer based FAN are close to actual perturbation values.
And, a inherent chattering occurred in the conventional
sliding mode controller is reduced by using the sliding
mode controller with perturbation estimator. Therefore, the
proposed controller is able to provide a superior
performance over the conventional sliding mode controller.
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V1. Conclusion

This paper proposed the perturbation estimator using the
observer based FAN, the sliding state observer for a
nonlinear system, and a new robust and intelligent control
algorithm named the sliding mode control with perturbation
estimator using observer based FAN. The new observer
structure is better than other state observer because this
observer with perturbation estimator improves estimation
accuracy of the states, in spite of nonlinear system. And, it
provides an on-line perturbation estimation scheme by using
the FAN. The proposed control algorithm can reduce the
inherent chattering as estimating the states and
compensating a perturbation in accuracy. And, a simple
tracking control simulation was carried out for evatuating
the proposed controlier, the sliding state observer, and the
perturbation estimator. The simulation results show that the
designed sliding mode control can provide reliable tracking
performance.
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Fig. 9. The position errors by using the proposed SMC.
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Fig. 10. The velocity errors by using the proposed SMC.
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Fig. 11. Estimation position errors.
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Fig. 13. Actual perturbation.
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Fig. 14. Estimated perturbation.
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