• Title/Summary/Keyword: sliding mode control (SMC)

Search Result 201, Processing Time 0.032 seconds

The Design and Simulation of a Fuzzy Logic Sliding Mode Controller (FLSMC) and Application to an Uninterruptible Power System Control

  • Phakamach, Phongsak;Akkaraphong, Chumphol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.389-394
    • /
    • 2004
  • A Fuzzy Logic Sliding Mode Control or FLSMC for the uninterruptible power system (UPS) is presented, which is tracking a sinusoidal ac voltage with specified frequency and amplitude. The FLSMC algorithm combines feedforward strategy with the Variable Structure Control (VSC) or Sliding Mode Control (SMC) and fuzzy logic control. The control function is derived to guarantee the existence of a sliding mode. FLSMC has an advantage that the stability of FLSMC can be proved easily in terms of VSC. Furthermore, the rules of the proposed FLSMC are independent of the number of system state variables because the input of the suggested controller is fuzzy quantity sliding surface value. Hence the rules of the proposed FLSMC can be reduced. The simulation results illustrate that the purposed approach gives a significant improvement on the tracking performances. It has the small overshoot in the transient and the smaller chattering in the steady state than the conventional VSC. Moreover, its can achieve the requirements of robustness and can supply a high-quality voltage power source in the presence of plant parameter variations, external load disturbances and nonlinear dynamic interactions.

  • PDF

Finite-Time Sliding Mode Controller Design for Formation Control of Multi-Agent Mobile Robots (다중 에이전트 모바일 로봇 대형제어를 위한 유한시간 슬라이딩 모드 제어기 설계)

  • Park, Dong-Ju;Moon, Jeong-Whan;Han, Seong-Ik
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.3
    • /
    • pp.339-349
    • /
    • 2017
  • In this paper, we present a finite-time sliding mode control (FSMC) with an integral finite-time sliding surface for applying the concept of graph theory to a distributed wheeled mobile robot (WMR) system. The kinematic and dynamic property of the WMR system are considered simultaneously to design a finite-time sliding mode controller. Next, consensus and formation control laws for distributed WMR systems are derived by using the graph theory. The kinematic and dynamic controllers are applied simultaneously to compensate the dynamic effect of the WMR system. Compared to the conventional sliding mode control (SMC), fast convergence is assured and the finite-time performance index is derived using extended Lyapunov function with adaptive law to describe the uncertainty. Numerical simulation results of formation control for WMR systems shows the efficacy of the proposed controller.

Sliding Mode Control with Nonlinear Interpolation in Variable Boundary Layer

  • Kim, Yookyung;Jeon, Gijoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.35.1-35
    • /
    • 2002
  • $\textbullet$ Sliding mode control (SMC) with nonlinear interpolation in variable boundary layer (VBL) is proposed $\textbullet$ A sigmoid function is used for nonlinear interpolation in VBL. $\textbullet$ The Parameter of the sigmoid function is tuned by fuzzy controller $\textbullet$ The choice of parameter for the sigmoid function is guided by FC. $\textbullet$ The parameter is continuously updated as boundary layer thickness varies. $\textbullet$ The proposed method hasbetter tracking performance than the conventional linear interpolation $\textbullet$ To demonstrate its performance the proposed control algorithm is applied to a nonlinear system.

  • PDF

Robust $H{\infty}$ Control Using Sliding Mode and LMI (슬라이딩모드와 LMI를 이용한 강인 $H{\infty}$ 제어)

  • Kim, Su-Jin;Kim, Min-Chan;Park, Seung-Kyu;Ahn, Ho-Kyun;Kwak, Gun-Pyong;Yoon, Tae-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.316-321
    • /
    • 2007
  • [ $H{\infty}$ ] controller, which shows robustness for disturbances and noises, can not be used in the case of uncertain system parameters. Even if the $H{\infty}$ controller can be designed for the parameter uncertain system, its performance can be deteriorated. Therefore, in this paper, the robustness of $H{\infty}$ controller is improved by using the SMC(Sliding Mode Control). The LMI based $H{\infty}$ controller is designed first and then SMC controller is added.

Adaptive Fuzzy Sliding-Mode Controller for Nonaffine Nonlinear Systems (비어파인 비선형 계통에 대한 적응 퍼지 슬라이딩 모드 제어기)

  • Park, Jang-Hyun;Kim, Seong-Hwan;Lyoo, Young-Jae;Moon, Chae-Joo
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.697-700
    • /
    • 2005
  • An adaptive fuzzy sliding-mode controller (SMC) for uncertain or ill-defined single-input single-output (SISO) nonaffine nonlinear systems is proposed. By using the universal approximation property of the fuzzy logic system (FLS), it is tuned on-line to cancel the unknown system nonlinearity. We adopt a self-structuring FLS to guarantee global stability of the closed-loop system rather than semi=global boundedness. The control and adaptive laws are derived so that the estimated fuzzy parameters are bounded and the sliding condition is satisfied.

  • PDF

Design of a Sliding Mode Controller with Nonlinear Boundary Transfer Characteristics

  • Kim, Yoo K.;Gi J. Jeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.164.2-164
    • /
    • 2001
  • Sliding mode control (SMC) with variable nonlinear boundary layer is proposed. Two Fuzzy logic controllers (FLCs) are used to decide both boundary layer thickness and nonlinear interpolation using sigmoid function in the boundary layer. The nonlinear interpolation in the boundary layer suing FLC reduces stead state error and chattering. Sigmoid function is used to nonlinear interpolation in the boundary layer sigmoid function parameter with FLC. To demonstrate its performance, the Proposed control algorithm is applied to a simple nonlinear system.

  • PDF

Design of Robust Controller using Neural Network and Sliding Mode

  • Kim, Min-Chan;Kim, Tae-Kue;Park, Seung-Kyu;Kwak, Gun-Pyong;Ahn, Ho-Kyun;Yoon, Tae-Sung
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.3
    • /
    • pp.333-338
    • /
    • 2010
  • This paper derives a nominal state relationship (NSR) from the data of a nominal system. Through an example of a second order system, it is shown that the relationship can be derived only in the system with different real eigenvalues. In higher order system, the relationship is expressed by using neural network (NN). The derived NSR is used to design a noble sliding surface with a nominal system characteristic. By using the sliding surface, the robustness of the sliding mode control (SMC) is added to the pole-placement control.

Design of a SMC-type FLC and Its Equivalence

  • 최병재;곽성우;김병국
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.5
    • /
    • pp.14-20
    • /
    • 1997
  • This paper proposes a new design method for the SMC-type FLC and shows that a SMC-type LFC is an extension of the SMC with BL. The conventional SMC-type FLC uses error and change-of-error as inputs of the FLC and generates the absolute value of a switching magnitude. Then, the fuzzy rule table is constructed on a two-dimensional space of the phase plane and has commonly the skew symmetric property. In this paper, we introduce a new variable, signed distance, from the skew symmetric property of the rule table. And thd variable becomes only a fuzzy variable that is used to generate the control input of a SMC-type FLC. that is, we design a new SMC-type FLC that uses a signed distance and a control input as the variables representing the contents of the rule-antecedent and the rule-con-sequent, respectively. Then the number of total rules is reduced and the control performance is almost the same as that of the conventional SMC-type FLC. Additionally, we derive the control law of the ordinary SMC with BL from a new SMC-type FLC. Namely, we show that a FLC is an extension of the SMC with BL.

  • PDF

Improving the Dynamic Performance of Distribution Electronic Power Transformers Using Sliding Mode Control

  • Hooshmand, Rahmat-Allah;Ataei, Mohammad;Rezaei, Mohammad Hosein
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.145-156
    • /
    • 2012
  • These days, the application of electronic power transformers (EPTs) is expanding in place of ordinary power transformers. These transformers can transmit power via three or four wire converters. Their dynamic performance is extremely important, due to their complex structure. In this paper, a new method is proposed for improving the dynamic performance of distribution electronic power transformers (DEPT) by using sliding mode control (SMC). Hence, to express the dynamic characteristics of a system, different factors such as the voltage unbalance, voltage sag, voltage harmonics and voltage flicker in the system primary side are considered. The four controlling aims of the improvement in dynamic performance include: 1) maintaining the input currents so that they are in sinusoidal form and in phase with the input voltages so they have a unity power factor, 2) keeping the dc-link voltage within the reference amount, 3) keeping the output voltages at a fixed amount and 4) keeping the output voltages in sinusoidal and symmetrical forms. Simulation results indicate the potential and capability of the proposed method in improving DEPT behavior.