• Title/Summary/Keyword: sliding mesh

Search Result 79, Processing Time 0.019 seconds

Numerical Investigation of the Effect of Spacing in Coaxial Propeller Multi-Copter in Hovering (멀티콥터용 동축반전 프로펠러 상하 간격에 따른 제자리 비행 공력 특성에 대한 수치적 연구)

  • Sim, Min-Cheol;Lee, Kyung-Tae;Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.2
    • /
    • pp.89-97
    • /
    • 2020
  • In this study, a numerical analysis was performed on 26 inch single and coaxial propeller using the ANSYS Fluent 19.0 Solver to analyse the effect of the distance between coaxial propellers as one of the design parameter. The Moving Reference Frame (MRF) method was used for single propeller, while the sliding mesh method was used for a coaxial propeller to analyse the flow field varying with azimuth angle. The thrust and power are decreased as the upper and lower propeller approaching each other. As H/D is increased, interference between the propellers is decreased. According to the flow field variable contour of the coaxial propeller, it appears that the change in aerodynamic performance is due to the loading effect and the tip vortex wake effect.

Numerical Analysis of Helicopter Rotor Blade in Forward Flight Using Unstructured Adaptive Meshes (비정렬 적응격자 기법을 이용한 전진비행하는 헬리콥터 로터 블레이드의 수치 해석)

  • Park Y. M.;Lee J. Y.;Kwon O. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.95-101
    • /
    • 2003
  • A three dimensional inviscid parallel flow solver has been developed for the simulation of rotor blades in forward flight. The computational domain is divided into stationary and rotating zones for the more efficient mesh adaptation. The conservative mesh treatment algorithm is used for the convection of flow variables and fluxes across the sliding boundary. A deforming mesh algorithm using modified spring analogy is used for the blade motion. In the present paper, detail descriptions of numerical analysis for forward flight are introduced. Some results are presented for a two bladed AH-1G rotor and compared with experimental data.

  • PDF

Photorealistic Real-Time Dense 3D Mesh Mapping for AUV (자율 수중 로봇을 위한 사실적인 실시간 고밀도 3차원 Mesh 지도 작성)

  • Jungwoo Lee;Younggun Cho
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.2
    • /
    • pp.188-195
    • /
    • 2024
  • This paper proposes a photorealistic real-time dense 3D mapping system that utilizes a neural network-based image enhancement method and mesh-based map representation. Due to the characteristics of the underwater environment, where problems such as hazing and low contrast occur, it is hard to apply conventional simultaneous localization and mapping (SLAM) methods. At the same time, the behavior of Autonomous Underwater Vehicle (AUV) is computationally constrained. In this paper, we utilize a neural network-based image enhancement method to improve pose estimation and mapping quality and apply a sliding window-based mesh expansion method to enable lightweight, fast, and photorealistic mapping. To validate our results, we utilize real-world and indoor synthetic datasets. We performed qualitative validation with the real-world dataset and quantitative validation by modeling images from the indoor synthetic dataset as underwater scenes.

The Improvement of Incompatible Sliding Contact Problem Using Mesh Refinement And Its Application to Railway Skewed Culvert Problem (요소 세분화를 이용한 비적합 미끄러지는 접촉문제의 개선과 철도 사각암거 문제에의 적용)

  • Choi, Chan-Yong;Yeo, In-Ho;Chung, Keun-Young;Lee, Gye-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.435-444
    • /
    • 2017
  • The vehicle-track structure dynamic interaction analysis problem can be treated as sliding contact problem, and it is assumed that vehicle run at a constant speed over a rail modeled as beam elements. Unfortunately, Salome-Meca can not satisfy the compatibility condition for the beam master elements, which are consist of the elements with higher order polynomial shape function, in sliding contact problem. In this study, it is suggested to use more finer beam master element mesh as the remedy for incompatibility in sliding contact problem, and the accuracy of the solution is secured. For this, the effect of beam element mesh refinement consisting runway is analysed through simple examples, and the applicability to the dynamic interaction analysis is evaluated. Finally, the dynamic interaction analysis of railway skewed culvert transition problem is carried out to evaluate the effect of supporting stiffness due to backfill pattern changes and track irregularity due to uneven subgrade settlement.

Design of an Image Processing ASIC Architecture using Parallel Approach with Zero or Little (통신부담을 감소시킨 영상처리를 위한 병렬처리 방식 ASIC구조 설계)

  • 안병덕;정지원;선우명훈
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.10
    • /
    • pp.2043-2052
    • /
    • 1994
  • This paper proposes a new parallel ASIC architecture for real-time image processing to reduce inter-processing element (inter-PE) communication overhead, called a Sliding Memory Plane (SliM) Image Processor. The Slim Image Processor consists of $3\times3$ processing elements (PEs) connected by a mesh topology. With easy scalability due to the topology. a set of SliM Image Processors can form a mesh-connected SIMD parallel architecture. called the SliM Array Processor. The idea of sliding means that all pixels are slided into all neighboring PEs without interrupting PEs and without a coprocessor or a DMA controller. Since the inter-PE communication and computation occur simultaneously. the inter-PE communication overhead, significant disadvantage of existing machines greatly diminishes. Two I/O planes provide a buffering capability and reduce the date I/O overhead. In addition, using the by-passing path provides eight-way connectivity even with four links. with these salient features. SliM shows a significant performance improvement. This paper presents architectures of a PE and the SliM Image Processor, and describes the design of an instruction set.

  • PDF

Three Dimensional Finite Element Inverse Analysis of Rectangular Cup and S-Rail Forming Processes using a Direct Mesh Mapping Method (직접 격자 사상법을 이용한 직사각컵 및 S-Rail 성형공정의 3차원 유한요소 역해석)

  • Kim S. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.81-84
    • /
    • 2001
  • An inverse finite element approach is employed for more capability to design the optimum blank shape from the desired final shape with small amount of computation time and effort. In some drawing or stamping simulation with inverse method, it is difficult to apply inverse scheme due to the large aspect ratio or steep vertical angle of inclination. The reason is that initial guesses are hard to make out with present method for those cases. In this paper, a direct mesh marring scheme to generate initial guess on the sliding constraint surface described by finite element patches is suggested for one step inverse analysis to calculate initial blank shape. Radial type mapping is adopted for the simulation of rectangular cup drawing process with large aspect ratio and parallel type mapping for the simulation of S-Rail forming process with steep vertical angle of inclination.

  • PDF

Inverse Finite Element Analysis of Autobody Structures with a Direct Mesh Mapping Method for Crash Analysis Considering Forming Effets (직접격자 사상법을 이용한 차체 구조물의 유한요소 역해석 및 성형효과를 고려한 충돌해석)

  • Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.11 no.5
    • /
    • pp.457-464
    • /
    • 2002
  • A finite element inverse analysis is utilized to consider forming effects of an S-rail on the assessment of the crashworthiness with small amount of computation time. A crash analysis can be directly performed after the inverse simulation of a forming process without a smoothing or remeshing scheme. The direct mesh mapping method is used to calculate an initial guess from a sliding constraint surface that is extracted from the die and punch set. Analysis results demonstrate that energy absorption of structures is increased when simulation considers forming effects of thickness variation and work hardening. The finite element inverse analysis is proved to be an effective tool in consideration of forming effects for the crash analysis.

THE INVESTIGATION OF HELICOPTER ROTOR AERODYNAMIC ANALYSIS METHODS (헬리콥터 로터 공력해석을 위한 수치적 방법 연구)

  • Park, N.E.;Woo, C.H.;Rho, H.W.;Kim, C.H.;Yee, S.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.120-124
    • /
    • 2007
  • Helicopters and rotary-wing vehicles encounter a wide variety of complex aerodynamic phenomena and these phenomena present substantial challenges for computational fluid dynamics(CFD) models. This investigation presents the rotor aerodynamic analysis items for the helicopter development and variety aerodynamic analysis methods to provide the better solution to researchers and helicopter developers between aerodynamic problems and numerical aerodynamic analysis methods. The numerical methods to make an analysis of helicopter rotor are as below - CFD Modelling : actuator disk model, BET model, fully rotor model,... - Grid : sliding mesh, chimera mesh / structure mesh, unstructure mesh,... - etc. : panel method periodic boundary, quasi-steady simulation, incompressible,... The choice of CFD methodology and the numerical resolution for the overall problem have been driven mostly by available computer speed and memory at any point in time. The combination of the knowledge of aerodynamic analysis items, available computing power and choice of CFD methods now allows the solution of a number of important rotorcraft aerodynamics design problems.

  • PDF

A photoelastic study on the initial stress distribution of the upper anterior teeth retraction using combination loop archwire and sliding mechanics (Combination loon archwire와 활주역학을 이용한 상악전치의 후방 견인시 나타나는 초기 응력 분포에 관한 광탄성학적 연구)

  • Yim, Kang-Soon;Lee, Jin-Woo;Cha, Kyung-Suk
    • The korean journal of orthodontics
    • /
    • v.34 no.4 s.105
    • /
    • pp.303-312
    • /
    • 2004
  • An unfavorable tipping movement can occur during the retraction of anterior teeth because orthodontic force is loaded by brackets positioned far from the center of resistance. To avoid this unfavorable movement, a compensating curved wire or lingual root torque wire is used. The purpose of this study is to investigate, using photoelastic material, the distribution of initial stress associated with the retraction of the incisors according to the degree of the compensating curve, to model changes associated with tooth ud alveolar bone structure. The following results were obtained by analysis of the polarizing plate of the effects of initial stress resulting from retraction of the anterior teeth: 1. When the incisors were retracted using combination archwire or sliding mechanics, the maximal polarizing pattern of the apical area decreased as the degree of the compensating owe increased from 0 to 15 to 30. 2. When the incisors were retracted by the combination archwire or sliding mechanics, the maximal polarizing pattern of the canine and premolar area increased as the degree of the compensating curve increased from 0to 15to 30. 3. A lower degree of polarizing patterns were associated with the combination archwire technique than the sliding mechanics technique at a given force. The above results indicate that there is no significant difference between the combination loop archwire technique and sliding mechanics, for the retraction of maxillary anterior teeth with decreased lingual tipping tendency by a compensating curve on the arch wire. However, the use of sliding mechanics is more effective for the prevention of lingual inclination of the anterior teeth, because the hook used in sliding mechanics is closer to the center of resistance of the maxillary anterior teeth.

A Study on the Self-Propulsion CFD Analysis for a Catamaran with Asymmetrical Inside and Outside Hull Form (안팎 형상이 비대칭인 쌍동선의 자항성능 CFD 해석에 관한 연구)

  • Jonghyeon Lee;Dong-Woo Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.1
    • /
    • pp.108-117
    • /
    • 2024
  • In this study, simulations based on computational fluid dynamics were performed for self-propulsion performance prediction of a catamaran that has asymmetrical inside and outside hull form and numerous knuckle lines. In the simulations, the Moving Reference Frame (MRF) or Sliding Mesh (SDM) techniques were used, and the rotation angle of the propeller per time step was different to identify the difference using the analysis technique and condition. The propeller rotation angle used in the MRF technique was 1˚ and those used in the SDM technique were 1˚, 5˚, or 10˚. The torque of the propeller was similar in both the techniques; however, the thrust and resistance of the hull were computed lower when the SDM technique was applied than when the MRF technique was applied, and higher as the rotation angle of the propeller per time step in the SDM technique was smaller in the simulations for several revolutions of the propeller to estimate the self-propulsion condition. The revolutions, thrust, and torque of the propeller in the self-propulsion condition obtained using linear interpolation and the delivered power, wake fraction, thrust deduction factor, and revolutions of the propeller obtained using the full-scale prediction method showed the same trend for both the techniques; however, most of the self-propulsion efficiency showed the opposite trend for these techniques. The accuracy of the propeller wake was low in the simulations when the MRF technique was applied, and slight difference existed in the expression of the wake according to the rotation angle of the propeller per time step when the SDM technique was applied.