• Title/Summary/Keyword: sliding joint

Search Result 183, Processing Time 0.026 seconds

TRIBOLOGICAL PROPERTIES OF DLC FILMS SLIDING AGAINST DIFFERENT STEELS

  • Suzuki, M.;Tanaka, A,
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.173-174
    • /
    • 2002
  • To study the effects of mating materials on the tribological properties of DLC films. we used a ball-on-plate reciprocating friction tester in dry air and mating materials of martensite stainless steel (hardened, annealed SUS440C), austenite stainless steels (SUS304), and bearing steel (hardened, annealed SUJ2). At a light load of 0.6 N, the friction coefficient always exceeded ${\mu}>0.3$. Tribological properties of DLC film were still excellent above 0.6 N, except in sliding against annealed SUJ2. Analysis using micro-laser Raman spectroscopy showed that the difference between annealed SUJ2 and others materials appears mainly due to structural change in film.

  • PDF

Modeling & Control of a Multi-Joint Robot actuated by the Ball Screw (볼나사 구동기를 이용한 다관절 로봇의 모델링 및 제어)

  • 최형식;김영식;전대원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.323-326
    • /
    • 1997
  • Conventional robots actuated by motors with the speed reducer such as harmonic drive had weakness in delivering loads, pressing, grinding, and cutting jobs. To overcome this, the developer a new type of robot actuated by the ball screw. The robot is an articulated shape, which is composed of four axes. The base axis is actuated similarly with conventional robot, but the others are actuated by four bars mechanism composed of the ball screw. We setup the dynamics model of the robot. The robot has parameter uncertainties and nonlinearlity due to the ball screw actuator. To coordinate the robot, we applied sliding-mode control.

  • PDF

Kinematic Modeling of Mobile Robots by Transfer Method of Augmented Generalized Coordinates (확장된 좌표계 전환기법에 의한 모바일 로봇의 기구학 모델링)

  • Kim, Wheekuk;Kim, Do-Hyung;Yi, Byung-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.3
    • /
    • pp.233-242
    • /
    • 2002
  • A kinematic modeling method is proposed which models the sliding and skidding at the wheels as pseudo joints and utilizes those pseudo joint variables as augmented variables. Kinematic models of various type of wheels are derived based on this modeling method. Then, the transfer method of augmented generalized coordinates is applied to obtain inverse and forward kinematic models of mobile robots. The kinematic models of five different types of planar mobile robots are derided to show the effectiveness of the proposed modeling method.

Finite motion analysis for multifingered robotic hand considering sliding effects

  • Chong, Nak-Young;Choi, Donghoon;Suh, Il-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.370-375
    • /
    • 1992
  • An algorithm for the notion planning of the robotic hand is proposed to generate finite displacements and changes in orientation of objects by considering sliding effects between the fingertips and the object at contact points. Specifically, an optimization problem is firstly solved to find minimum contact forces and minimum joint velocities to impart a desired motion to the object at each time step. Then the instantaneous relative velocity at the contact point is found by determining velocities of the fingertip and the velocity of the object at the contact point. Finally time derivatives of the surface variables and contact angle of the fingertip and the object at the present time step is computed using the Montana's contact equation to find the contact parameters of the fingertip and the object at the next time step. To show the validity of the proposed algorithm, a numerical example is illustrated by employing the robotic hand manipulating a sphere with three fingers each of which has four joints.

  • PDF

Useful effect of a clinical shoe insole, Mubal®, as orthotics

  • Park, Chan-Lee;Go, Ji-Hyun;Han, Na-Ra;Moon, Hong-Hee;Seo, Min-Jun
    • CELLMED
    • /
    • v.5 no.2
    • /
    • pp.10.1-10.3
    • /
    • 2015
  • Arthritis is a major cause of joint pain, stiffness, and subsequent disability which adversely affects quality of life. Seriously, it can lead to long term social and psychological effects including loss of independence, depression, and anxiety. Arthritis is usually treated with joint replacement surgery or medications. However, the artificial joint is temporary and pharmacological measures have side effects, such as addiction or hypersensitivity. Thus, orthotics has been developed to improve arthritis as a nonpharmacological measure. The increased regional load across compartments of articular cartilage is an important factor in the cause of the arthritis. Mubal$^{(R)}$, a clinical shoe insole, has a sliding function to help people to walk straight and realign the body balance. The slide of Mubal$^{(R)}$ reduces the knee joint loading in patients with arthritis. In addition, pumping function of Mubal$^{(R)}$ can mitigate arthritis by stretching the squashed nerves from lumbar to cervical vertebral and actively circulating blood of pelvic limb. In addition, Mubal$^{(R)}$ could help to stimulate the growth plate. Therefore, Mubal$^{(R)}$ can be used for the child with short stature as well as patients with arthritis.

Numerical modeling and prediction of adhesion failure of adhesively bonded composite T-Joint structure

  • Panda, Subhransu K;Mishra, Pradeep K;Panda, Subrata K
    • Structural Engineering and Mechanics
    • /
    • v.74 no.6
    • /
    • pp.723-735
    • /
    • 2020
  • This study is reported the adhesion failure in adhesive bonded composite and specifically for the T-joint structure. Three-dimensional finite element analysis has been performed using a commercial tool and the necessary outcomes are obtained via an eight noded solid element (Solid 185-element) from the library of ANSYS. The structural analysis input has been incurred through ANSYS parametric design language (APDL) code. The normal and shear stress distributions along different layers of the joint structure have been evaluated as the final outcomes. Based on the stress distributions, failure location in the composite joint structure has been identified by using the Tsai-Wu stress failure criterion. It has been found that the failure index is maximum at the interface between flange and web part of the joint (top layer) which indicates the probable location of failure initiation. This kind of failures are considered as adhesion failure and the failure propagation is governed by strain energy release rate (SERR) of fracture mechanics. The different adhesion failure lengths are also considered at the failure location to calculate the SERR values i.e. mode I fracture (opening), mode II fracture (sliding) and mode III fracture (tearing) along the failure front. Also, virtual crack closure technique (VCCT) principle of fracture mechanics steps is used to calculate the above said SERRs. It is found that the mode I SERR is more dominating compared to other two modes of failure for the joint considered. Finally, the influences of various parametric (geometrical and material) effect on SERR of the joint structure are evaluated and discussed in details.

Study on Dynamic Crawling of The Five-bar Planar Mechanism (5절 평면형 메커니즘의 동적 포복에 관한 연구)

  • Lee J.H.;Lim N.S.;Kim W.K.;Yi B.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1045-1049
    • /
    • 2005
  • In this paper, the dynamic crawling of a five-bar planar mechanism is investigated. One complete cycle of the crawling selected in this study consists of four different steps, i) sliding at one contact point between the mechanism and the ground, ii) changing its configuration without sliding at two contact points, iii) sliding at the other contact point, and iv) again changing its configuration without sliding at two contact points. In this type of crawling, the crawling mechanism maintains the shape of the parallel structure throughout a complete crawling cycle. The modeling algorithm for serial manipulators proposed by M. Thomas and et al.[1] is employed by introducing imaginary joints and links which represent the contact interfaces between the one end of the mechanism and the ground, while the other end of the mechanism is regarded as an end-effector of the imaginary serial manipulator which treats the reaction force and torque at the contact point as external forces. Then, a complete cycle of dynamic crawling of the mechanism is investigated through various computer simulations. The simulation result show that the stable crawling characteristics of the mechanism could be secured when the proper configurations depending on specified frictional constraints are met.

  • PDF

Slip Behavior of High-Tension Bolted Joints Subjected to Compression Force (압축력을 받는 고장력 볼트 이음부의 미끄러짐 거동)

  • Han, Jin Hee;Choi, Jong Kyoung;Heo, In Sung;Kim, Sung Bo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.279-288
    • /
    • 2008
  • In this study, the slip behavior of high-tension bolted joints subjected to compression force is investigated through 3D finite element analysis and experiments. The relation with sliding load, bolt deformation, and failure load are studied with the metal thickness affecting the bolted joint. The post-sliding behavior considering bolt stiffness is presented and compared with the results by finite element and experiments. The finite element model is constructed by solid elements in ABAQUS, in consideration of all the friction effects between metal plates and bolts. The stress-strain relations in the literature are used, and the sliding displacements and axial stresses around the bolt connection are investigated. The flexural buckling of species happened when the plate thickness is less than the bolt diameter. However, the shear failures of bolt occurred in the opposite case.

Immediate effects of a neurodynamic sciatic nerve sliding technique on hamstring flexibility and postural balance in healthy adults

  • Park, Jaemyoung;Cha, Jaeyun;Kim, Hyunjin;Asakawa, Yasuyoshi
    • Physical Therapy Rehabilitation Science
    • /
    • v.3 no.1
    • /
    • pp.38-42
    • /
    • 2014
  • Objective: In this study, we applied a neurodynamic sciatic nerve sliding technique to healthy adults to elucidate its effects on hamstring flexibility and postural balance. Design: Cross-sectional study. Methods: This study targeted twenty four healthy adults (16 men, 8 women). A neurodynamic sciatic nerve sliding technique was applied 5 times to all subjects' dominant leg. The subjects were asked to sit on the bed while performing cervical and thoracic flexion, as well as knee flexion with ankle plantar flexion. Then, they were asked to perform cervical and thoracic extension and knee extension with their ankle in dorsiflexion and maintain the position for 60 s. For postural balance, we measured postural sway while the subjects maintained a one-legged standing posture using the Good Balance System and measured the hip joint flexion range of motion using a standardized passive straight leg raise (SLR) test. Results: SLR test increased significantly from $79^{\circ}$ before the intervention to $91.67^{\circ}$ after the intervention (p<0.05). Regarding the participants' balance evaluated using the one-legged standing test, the X-speed decreased significantly from 18.61 mm/s to 17.17 mm/s (p<0.05), the Y-speed decreased from 22.28 mm/s to 20.52 mm/s (p<0.05), and the velocity moment was significantly decreased from $89.33mm^2/s$ to $74.99mm^2/s$ after the intervention (p<0.05). Conclusions: Application of the neurodynamic sciatic nerve sliding technique exhibited improved hamstring flexibility and postural balance of healthy adults.

Multi-body Dynamic Analysis for Tripod Constant Velocity Joint (트라이포드 타입 등속조인트의 다물체 동역학 해석)

  • Song, Myung-Eui;Lim, Young-Hun;Cho, Hui-Je;Bae, Dae-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • The paper proposes a multi-body dynamic simulation to numerically evaluate the generated axial force(G.A.F) and plunging resistant force(P.R.F) practically related to the shudder and idling vibration of an automobile. A numerical analysis of two plunging types of CV joints, tripod joint(TJ) and very low axial tripod joint(VTJ), is conducted using the commercial program DAFUL. User-defined subroutines of a friction model illustrating the contacted parts of the outboard and inboard joint are subsequently developed to overcome the numerical instability and improve the solution performance. The Coulomb friction effect is applied to describe the contact models of the lubricated parts in the rolling and sliding mechanisms. The numerical results, in accordance with the joint articulation angle variation, are validated with experimentation. The offset between spider and tulip housing is demonstrated to be the critical role in producing the 3rd order component of the axial force that potentially causes the noise and vibration in vehicle. The VTJ shows an excellent behavior for the shudder when compared with TJ. In addition, a flexible nonlinear contact analysis coupled with rigid multi-body dynamics is also performed to show the dynamic strength characteristics of the rollers, housing, and spider.