• 제목/요약/키워드: slender column

검색결과 88건 처리시간 0.023초

Strength of biaxially loaded high strength reinforced concrete columns

  • Dundar, Cengiz;Tokgoz, Serkan
    • Structural Engineering and Mechanics
    • /
    • 제44권5호
    • /
    • pp.649-661
    • /
    • 2012
  • An experimental research was conducted to investigate the strength of biaxially loaded short and slender reinforced concrete columns with high strength concrete. In the study, square and L-shaped section reinforced concrete columns were constructed and tested to obtain the load-deformation behaviour and strength of columns. The test results of column specimens were analysed with a theoretical method based on the fiber element technique. The theoretical ultimate strength capacities and the test results of column specimens have been compared and discussed in the paper. Besides this, observed failure mode and experimental and theoretical load-lateral deflection behaviour of the column specimens are presented.

Tests on fiber reinforced concrete filled steel tubular columns

  • Gopal, S. Ramana;Devadas Manoharan, P.
    • Steel and Composite Structures
    • /
    • 제4권1호
    • /
    • pp.37-48
    • /
    • 2004
  • This paper deals with the strength and deformation of both short and slender concrete filled steel tubular columns under the combined actions of axial compression and bending moment. Sixteen specimens were tested to investigate the effect of fiber reinforced concrete on the ultimate strength and behavior of the composite column. The primary test parameters were load eccentricity and column slenderness. Companion tests were also undertaken on eight numbers of similar empty steel tubes to highlight the synergistic effects of composite column. The test results demonstrate the influence of fiber reinforced concrete on the strength and behavior of concrete filled steel tubular columns.

Wave load resistance of high strength concrete slender column subjected to eccentric compression

  • Jayakumar, M.;Rangan, B.V.
    • Structural Engineering and Mechanics
    • /
    • 제50권3호
    • /
    • pp.287-304
    • /
    • 2014
  • A computer based iterative numerical procedure has been developed to analyse reinforced high strength concrete columns subjected to horizontal wave loads and eccentric vertical load by taking the material, geometrical and wave load non-linearity into account. The behaviour of the column has been assumed, to be represented by Moment-Thrust-Curvature relationship of the column cross-section. The formulated computer program predicts horizontal load versus deflection behaviour of a column up to failure. The developed numerical model has been applied to analyse several column specimens of various slenderness, structural properties and axial load ratios, tested by other researchers. The predicted values are having a better agreement with experimental results. A simplified user friendly hydrodynamic load model has been developed based on Morison equation supplemented with a wave slap term to predict the high frequency non-linear impulsive hydrodynamic loads arising from steep waves, known as ringing loads. A computer program has been formulated based on the model to obtain the wave loads and non-dimensional wave load coefficients for all discretised nodes, along the length of column from instantaneous free water surface to bottom of the column at mud level. The columns of same size and material properties but having different slenderness ratio are analysed by the developed numerical procedure for the simulated wave loads under various vertical thrust. This paper discusses the results obtained in detail and effect of slenderness in resisting wave loads under various vertical thrust.

Simplified Design Procedure for Reinforced Concrete Columns Based on Equivalent Column Concept

  • Afefy, Hamdy M.;El-Tony, El-Tony M.
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권3호
    • /
    • pp.393-406
    • /
    • 2016
  • Axially loaded reinforced concrete columns are hardly exist in practice due to the development of some bending moments. These moments could be produced by gravity loads or the lateral loads. First, the current paper presents a detailed analysis on the overall structural behavior of 15 eccentrically loaded columns as well as one concentrically loaded control one. Columns bent in either single curvature or double curvature modes are tested experimentally up to failure under the effect of different end eccentricities combinations. Three end eccentricities ratio were studied, namely, 0.1b, 0.3b and 0.5b, where b is the column width. Second, an expression correlated the decay in the normalized axial capacity of the column and the acting end eccentricities was developed based on the experimental results and then verified against the available formula. Third, based on the equivalent column concept, the equivalent pin-ended columns were obtained for columns bent in either single or double curvature modes. And then, the effect of end eccentricity ratio was correlated to the equivalent column length. Finally, a simplified design procedure was proposed for eccentrically loaded braced column by transferring it to an equivalent axially loaded pin-ended slender column. The results of the proposed design procedure showed comparable results against the results of the ACI 318-14 code.

Vibrations of wind-turbines considering soil-structure interaction

  • Adhikari, S.;Bhattacharya, S.
    • Wind and Structures
    • /
    • 제14권2호
    • /
    • pp.85-112
    • /
    • 2011
  • Wind turbine structures are long slender columns with a rotor and blade assembly placed on the top. These slender structures vibrate due to dynamic environmental forces and its own dynamics. Analysis of the dynamic behavior of wind turbines is fundamental to the stability, performance, operation and safety of these systems. In this paper a simplied approach is outlined for free vibration analysis of these long, slender structures taking the soil-structure interaction into account. The analytical method is based on an Euler-Bernoulli beam-column with elastic end supports. The elastic end-supports are considered to model the flexible nature of the interaction of these systems with soil. A closed-form approximate expression has been derived for the first natural frequency of the system. This new expression is a function of geometric and elastic properties of wind turbine tower and properties of the foundation including soil. The proposed simple expression has been independently validated using an exact numerical method, laboratory based experimental measurement and field measurement of a real wind turbine structure. The results obtained in the paper shows that the proposed expression can be used for a quick assessment of the fundamental frequency of a wind turbine taking the soil-structure interaction into account.

장기 2축 휨을 받는 철근 콘크리트 장주의 해석 (Analysis of Slender RC Column Subjected to Long-term Biaxial Bending)

  • 곽효경;곽지현
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2009년도 춘계 학술대회 제21권1호
    • /
    • pp.181-182
    • /
    • 2009
  • 본 연구에서는 축력과 2축 휨을 받는 철근콘크리트 장주의 장기 저항능력을 산정할 수 있는 비선형 해석 모델을 제안하였다. 제안된 모델에서는 콘크리트의 장기 거동에 의해 발생하는 비역학적 변형 및 P- $\Delta$효과로 인한 기하 비선형 뿐 만 아니라 콘크리트의 균열 및 철근의 항복 등 재료 비선형성이 고려되었다. 다른 연구자들의 실험 결과와의 비교를 통하여 제안된 모델을 검증 하였다.

  • PDF

가늘고 긴 소형로켓의 비행특성에 영향을 주는 외력에 기인한 임계하중에 관한 연구 (A study on critical load due to external force influencing on flight characteristics of a small slender body rocket.)

  • 고태식;나선화
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제29회 추계학술대회논문집
    • /
    • pp.393-397
    • /
    • 2007
  • 이 연구의 목적은 추력, 항력, 중량 등의 외력들에 기인하여 가늘고 긴 동체의 소형로켓의 비행궤도에 영향을 줄 수 있는 임계하중을 조사하는데 있다. 임계하중은 먼저 Euler 기둥식을 이용하여 구하였고, 검증을 위해 유한 요소법의 수치해석 결과와 비교하였다.

  • PDF

Effective Length of Reinforced Concrete Columns in Braced Frames

  • Tikka, Timo K.;Mirza, S. Ali
    • International Journal of Concrete Structures and Materials
    • /
    • 제8권2호
    • /
    • pp.99-116
    • /
    • 2014
  • The American Concrete Institute (ACI) 318-11 permits the use of the moment magnifier method for computing the design ultimate strength of slender reinforced concrete columns that are part of braced frames. This computed strength is influenced by the column effective length factor K, the equivalent uniform bending moment diagram factor $C_m$ and the effective flexural stiffness EI among other factors. For this study, 2,960 simple braced frames subjected to short-term loads were simulated to investigate the effect of using different methods of calculating the effective length factor K when computing the strength of columns in these frames. The theoretically computed column ultimate strengths were compared to the ultimate strengths of the same columns computed from the ACI moment magnifier method using different combinations of equations for K and EI. This study shows that for computing the column ultimate strength, the current practice of using the Jackson-Moreland Alignment Chart is the most accurate method for determining the effective length factor. The study also shows that for computing the column ultimate strength, the accuracy of the moment magnifier method can be further improved by replacing the current ACI equation for EI with a nonlinear equation for EI that includes variables affecting the column stiffness and proposed in an earlier investigation.

세장 단면의 고강도 강관을 적용한 각형 CFT 기둥의 압축실험 (Axial Load Test on Rectangular CFT Columns using High-Strength Steel and Slender Section)

  • 이호준;박홍근;최인락
    • 한국강구조학회 논문집
    • /
    • 제27권2호
    • /
    • pp.219-229
    • /
    • 2015
  • 각형 CFT 기둥에 대한 실험 연구를 수행하였다. 본 연구는 세장 단면의 고강도 강관을 적용한 CFT 기둥의 압축성능 평가하는 것이 주요 목적이다. 실험 변수는 강관의 판폭두께비, 콘크리트 강도, 강관 항복강도, 그리고 스티프너의 사용여부이다. 총 5개의 기둥 실험체에 대하여 중심압축 실험을 수행하였다. 고강도 강관을 적용한 실험체는 탄성국부좌굴이 발생하였지만, 높은 항복강도로 인하여 상당한 후좌굴강도를 발휘하였다. 또한, 실험결과는 현행 설계기준에 의한 예상강도를 대체로 만족하였다. 세장 단면의 고강도 강관에 스티프너를 보강할 경우 강도와 변형능력 면에서 우수한 구조성능을 발휘하였다.

P-M interaction curve for reinforced concrete columns exposed to elevated temperature

  • Kang, Hyun;Cheon, Na-Rae;Lee, Deuck Hang;Lee, Jungmin;Kim, Kang Su;Kim, Heung-Youl
    • Computers and Concrete
    • /
    • 제19권5호
    • /
    • pp.537-544
    • /
    • 2017
  • The strength and deformational capacity of slender reinforced concrete (RC) columns greatly rely on their slenderness ratios, while an additional secondary moment (i.e., the $P-{\delta}$ effect) can be induced especially when the RC column members are exposed to fire. To evaluate the fire-resisting performances of RC columns, this study proposed an axial force-flexural moment (i.e., P-M) interaction curve model, which can reflect the fire-induced slenderness effects and the nonlinearity of building materials considering the level of stress and the magnitude of temperature. The P-M interaction model proposed in this study was verified in detail by comparing with the fire test results of RC column specimens reported in literature. The verification results showed that the proposed model can properly evaluate the fire-resisting performances of RC column members.