DOI QR코드

DOI QR Code

Axial Load Test on Rectangular CFT Columns using High-Strength Steel and Slender Section

세장 단면의 고강도 강관을 적용한 각형 CFT 기둥의 압축실험

  • Lee, Ho Jun (Dept. of Architecture & Architectural Engineering, Seoul National University) ;
  • Park, Hong Gun (Dept. of Architecture & Architectural Engineering, Seoul National University) ;
  • Choi, In Rak (Building Structure Research Group, POSCO Steel Solution Center)
  • Received : 2014.05.18
  • Accepted : 2015.02.05
  • Published : 2015.04.27

Abstract

An experimental study was performed for thin-walled rectangular concrete-filled tubular (CFT) columns. The present study mainly focused on evaluation of the axial load-carrying capacity of concrete-filled tubular columns using high-strength steel and slender section. The test parameters were width-to-thickness ratio, concrete strength, steel yield strength, and the use of stiffeners. Five specimens were tested under monotonic axial loading. Although elastic local buckling occurred in the slender-section specimens with high-strength steel, the specimens exhibited considerable post-buckling reserve. The test results also satisfied the predictions of a current design code. The specimens strengthened with vertical stiffeners exhibited improved strength and ductility when compared with the un-stiffened specimens.

각형 CFT 기둥에 대한 실험 연구를 수행하였다. 본 연구는 세장 단면의 고강도 강관을 적용한 CFT 기둥의 압축성능 평가하는 것이 주요 목적이다. 실험 변수는 강관의 판폭두께비, 콘크리트 강도, 강관 항복강도, 그리고 스티프너의 사용여부이다. 총 5개의 기둥 실험체에 대하여 중심압축 실험을 수행하였다. 고강도 강관을 적용한 실험체는 탄성국부좌굴이 발생하였지만, 높은 항복강도로 인하여 상당한 후좌굴강도를 발휘하였다. 또한, 실험결과는 현행 설계기준에 의한 예상강도를 대체로 만족하였다. 세장 단면의 고강도 강관에 스티프너를 보강할 경우 강도와 변형능력 면에서 우수한 구조성능을 발휘하였다.

Keywords

References

  1. 한국콘크리트학회(2012) 콘크리트구조기준(KCI 2012), 기문당. Korea Concrete Institute (2012) Concrete Design Code and Commentary, Kimoondang Publishing Company (in Korean).
  2. 이철호, 강기용, 김성용, 구철회(2013) 각형 콘크리트충전 강관기둥 부재의 구조설계기준 비교연구, 한국강구조학회논문집, 한국강구조학회, 제25권, 제4호, pp.389-398. Lee, C.H., Kang, K.Y., Kim, S.Y., and Koo, C.H. (2013) Review of Structural Design Provisions of Rectangular Concrete Filled Tubular Columns, Journal of Korean Society of Steel Construction, KSSC, Vol.25, No.4, pp.389-398 (in Korean).
  3. 박홍근, 이재훈, 윤현도, 이도형(2013) 합성 압축부재의 설계기준안, 한국콘크리트학회 2013 가을 학술대회 논문집, 한국콘크리트학회, pp.23-24. Park, H.G., Lee, J.H., Yun, H.D., and Lee, D.H. (2013) Proposal of Design for Composite Compression Members, Proceedings of Annual KCI Conference, KCI, pp.23-24 (in Korean).
  4. 최인락, 정경수, 김진호, 홍건호(2012) 이종강종을 사용한 고강도 CFT 합성부재의 구조성능, 한국강구조학회논문집, 한국강구조학회, 제24권, 제6호 pp.711-723. Choi, I.R., Chung, K.S., Kim, J.H., and Hong, G.H. (2012) Structural Performance of High-Strength Concrete-Filled Steel Tube Steel Columns using Different Strength Steels, Journal of Korean Society of Steel Construction, KSSC, Vol.24, No.6, pp.711-723 (in Korean).
  5. 홍건호, 김원기, 조원대, 최인락, 정경수(2013) 합성단면 분류 기준에 따른 CFT 축 압축강도 설계식 평가, 한국콘크리트학회 2013 가을 학술대회 논문집, 한국콘크리트학회, pp.13-14. Hong, K.H., Kim, W.K., Jo, W.D., Choi, I.R., and Chung, K.S. (2013) Evaluation of Axial Load Capacity on the Class of composite section type in CFT, Proceedings of Annual KCI Conference, KCI, pp.13-14 (in Korean).
  6. Sakino, K., Nakahara, H., Morino, S., and Nishiyama, I. (2004) Behavior of Centrally loaded Concrete-Filled Steel-Tube Short Columns, Journal of Structural Engineering, ASCE, Vol.130, No.2, pp.180-188. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180)
  7. Varma, A.H., Ricles, J.M., Sause, R., and Lu, L.W. (2002) Experimental Behavior of High Strength Square Concrete-Filled Steel Tube Beam-Columns, Journal of Structural Engineering, ASCE, Vol.128, No.3, pp.309-318. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:3(309)
  8. Matsumoto, M.S., Komuro, K.T., Narihara, N.H., Kawamoto, K.S., Hosozawa, H.O., and Morita, M.K. (2012) Structural Design of an Ultra High-rise Building Using Concrete Filled Tubular Column with Ultra High Strength Materials, Proceedings of 15th WCEE, Lisbon, Portugal.
  9. ANSI/AISC 360 (2010) Specification for Structural Steel Buildings, American Institute of Steel Construction, USA.
  10. Tao, Z., Han, L.H., and Wang, Z.B. (2005) Experimental Behavior of Stiffened Concrete-Filled Thin-Walled Hollow Steel Structural (HSS) Stub Columns, Journal of Constructional Steel Research, ELSEVIER, Vol.61, No.7, pp.962-983. https://doi.org/10.1016/j.jcsr.2004.12.003
  11. 대한건축학회(2009) 건축구조설계기준 및 해설(KBC 2009), 기문당. AIK (2009) Korea Building Code and Commentary - Structural, Architectural Institute of Korea (in Korean).
  12. Uy, B. and Bradford, M.A. (1996) Elastic Local Buckling of Steel Plates in Composite Steel-Concrete Members, Engineering Structures, ELSEVIER, Vol.18, No.3, pp. 193-200. https://doi.org/10.1016/0141-0296(95)00143-3
  13. Tort, C. and Hajjar, J.F. (2007) Reliability-Based Performance-Based Design of Rectangular Concrete-Filled Steel Tube (RCFT) Members and Frames, Structural Engineering Report No. ST-07-1, Department of Civil Engineering, University of Minnesota, Minneapolis, Minnesota, August.
  14. Uy, B. (1998) Local and Post-local Buckling of Concrete Filled Steel Welded Box Column, Journal of Constructional Steel Research, ELSEVIER, Vol.47, No.1-2, pp.47-72. https://doi.org/10.1016/S0143-974X(98)80102-8
  15. Nadal, A. (1961) Theory of Flow and Fracture in Solids, Vol. 1, McGraw-Hill, New York.
  16. Donnel, L.H. (1942) Plastic Flow as an Unstable Process, Journal of Applied Mechanics, ASME, Vol.9, June, 1942.

Cited by

  1. Evaluation of Compression Strengths of Octagonal Concrete-Filled Tube Columns vol.31, pp.4, 2019, https://doi.org/10.7781/kjoss.2019.31.5.349
  2. Axial Compression Behavior of Concrete-Encased Steel Angle Columns Using High-Strength Steel vol.31, pp.6, 2015, https://doi.org/10.7781/kjoss.2019.31.6.381
  3. 일축 압축력을 받는 콘크리트충전 각형강관 단주의 구조적 거동 vol.22, pp.2, 2015, https://doi.org/10.5762/kais.2021.22.2.617
  4. Investigation of Design Specifications for Compressive Strength of Concrete-Filled Steel Tube Columns vol.33, pp.6, 2021, https://doi.org/10.7781/kjoss.2021.33.6.383