• Title/Summary/Keyword: slag cement type

Search Result 170, Processing Time 0.021 seconds

An Experimental Study on the Construction Performances and Economical Evaluation of the Self-compacting Concrete by Cementitious Materials (결합재에 따른 자기충전 콘크리트의 시공성 및 경제성 평가에 관한 실험적 연구)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.315-322
    • /
    • 2017
  • The purpose of this study is to investigate experimentally the construction performances and economical evaluation of the self-compacting concrete in actual site work after selecting the optimum mix proportions according to cementitious materials. Slag cement type of 46.5% slag powder and belite cement of 51.4% $C_2S$ content, lime stone powder as binders are selected for site experiment including water cement ratio. Also, test items for optimum mix proportion are as followings ; (1) Slump flow, 500 mm reaching time, V-type flowing time and U-box height (2) Setting time, bleeding, shortening depth and adiabatic temperature rising (3) Mixing time in plant (4) Concrete quantity and cost, quality control in actual concrete work. As test results, (4) Optimum water-cement ratio ; Slag cement type 41.0% and belite cement 51.0% (2) Setting time and bleeding finishing time of slag cement are faster, bleeding content of slag cement is higher, shortening depth and adiabatic temperature rising of belite cement type are lower (3) Optimum mixing time in batcher plant is 75 seconds and concrete productive capacity is about $100{\sim}110m^3/hr$. (4) Belite cement type is lower than slag cement type in material cost 14.0%, and concrete quantity in actual concreting work save 3.3% in case of belite cement type. Therefore, self-compacting concrete of belite cement type is definitely superior to that of slag cement type in various test items without compressive strength development.

Effect of Slag Grade and Cement Source on the Properties of Concrete

  • Becknell, Natalie Peterson;Hale, William Micah
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.2
    • /
    • pp.119-123
    • /
    • 2011
  • Presented in the paper are findings of a project that examined the effect of slag grade and cement source on the performance of concrete mixtures. Slag cement contents were 20, 40, and 60 percent of the total cementitious material content. Two grades of slag cement were examined (Gr. 100 and Gr. 120) along with two sources of Type I cement. Compressive strength, durability, and permeability were measured. The results showed that the cement source affected the early age strength of the mixtures. At 28 days of age, mixtures containing Gr. 120 slag cement had higher compressive strengths than mixtures containing Gr. 100 slag cement, but by 90 days of age, the trend reversed. As for the chloride ion penetrability, mixtures cast with Gr. 100 slag cement passed fewer coulombs at 28 and 90 days of age than similar mixtures containing Gr. 120 slag. Mixtures containing Gr. 120 slag had the greatest durability factors.

Current Status of the Durability Study of Concrete Made with Various Cements in Korean Marine Environment (한국해양조건에서의 시멘트 종류별 콘크리트 내구 특성)

  • 박춘근;엄태형;정해문;임정렬;지정식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.163-169
    • /
    • 1997
  • The sea water resistance of cement and concrete must be considered when it is used for construction on the seashore of in the ocean. The concrete specimens using seven type of cements such as ordinary Portland cement, moderate heat Portland cement, sulfate resistance Portland cement, type A. B. C Portland blastfurnace slag cement and Portland flyash cement were immersed for 10 years in seawater in Kunsan. This study proved that moderate heat Portland cement, sulfate resistance Portland cement, type A Portland blastfurnace slag cement had higher resistance for seawater.

  • PDF

Hydration of Supersulphated Slag Cement with $C_4A_3\bar{S}$ type Clinker and Calcined Dolomite as Activator ($C_4A_3\bar{S}$계 클린커 및 하소돌로마이트를 자극제로 한 고환산염 슬라그 시멘트의 수화반응)

  • 박춘근;최상홀
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.2
    • /
    • pp.33-38
    • /
    • 1985
  • The hydration of supersulphated slag cement which is the mixture of granuloated blast furnace slag anhydrite $C_4A_3$ type clinker and calcined dolomite was studied by X-ray diffraction differential thermal analysis scanning electron microscope observation and measurement of the rate of heat liberation. The main hydrates were ettrigite and C-S-H. This supersulphated slag cement enhanced rapid-hardening and increased in strength at early stage due to the much of ettrigite. Furthermore the hardened cement became stronger due to the C-S-H that was produced from the hydration of the $eta$-$C_2S$ in $C_4A_3$ type clinker and the hydration of the dissolved components from slag at later period.

  • PDF

A Study on the Properties of the Confined water ratio for Binder type and Replacement ratio (결합재의 종류 및 치환율에 따른 구속수비의 특성에 관한 연구)

  • Kwon Yeong-Ho;Lee Hyun-Ho;Lee Hwa-Jin;Ha Jae-Dam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.584-587
    • /
    • 2004
  • This research investigates the rheological behavior and the confined water ratio of the cement paste and binder condition in order to predict mix design proportion of the high flowing concrete. The purpose of this study is to determine the optimum replacement ratio of binders including fly ash, and lime stone powder by the cement weight. For this purpose, belite cement, blast furnace slag cement and ordinary portland cement are selected. As test results, the confined water ratio shows the following range ; OPC>blast furnace slag cement>belite cement. Therefore, belite cement is proved very excellent cementitious materials in a view point of the flowability. The optimum replacement ratio of lime stone powder is shown over $30\%$ in case of belite cement and about $10\%$ in case of slag cement type. Also, the optimum replacement ratio of fly ash is shown $30\%$ by the cement weight considering the confined water ratio and deformable coefficient of the paste condition.

  • PDF

Fluidization characteristics of Non-sirtered cement mortar using blast furnace slag and fly ash (고로슬래그와 플라이애시를 이용한 비소성 시멘트 모르타르의 유동화 특성)

  • Byun, Hui-Jae;Na, Hyeong-Won;Hyung, Won-Gil
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.186-187
    • /
    • 2022
  • The purpose of this study was to give fluidizing properties to non-sirtered cement made using by-products that can replace Portland cement by using a fluidizing agent. Blast furnace slag, C-type fly ash, and F-type fly ash were used for non-sirtered cement, and sand was used for aggregate. The amount of fluidizing agent used was fixed at 1%, and the water-cement ratio (W/C) was different by setting the binder blending ratio of the non-sintered cement differently, and the fluidity test and flow were compared. As a result of the experiment, when the flow standard was 170mm when the fluidizing agent was used, the fluidizing properties were shown at an average water-cement ratio (W/C) of 36%. Through this study, it was confirmed that the fluidizing properties appeared when the fluidizing agent was used in non-sintered cement.

  • PDF

Strength of Non-Sintered Cement Mortar Using Ferro-nickel Slag Aggregate (페로니켈 슬래그 골재를 활용한 비소성 시멘트 모르타르의 강도 특성)

  • Youn, Min-Sik;Na, Hyeong-Won;Hyung, Won-Gil
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.17-18
    • /
    • 2022
  • Carbon dioxide emissions in the construction sector account for 38% of all industries, and environmental destruction is occurring due to indiscriminate use of natural resources. The purpose of this study is to develop by-product aggregate Non-Sintered Cement(NSC) that can replace sand used as natural aggregate and Portland cement. Therefore, Ground Granulated Blast Furnace Slag, Type C Fly Ash and Type F Fly Ash are used to replace cement, and water granulated ferro-nickel slag(FNS) is used to replace aggregate. The flow, compressive strength and flexural strength of the formulation using sand as an aggregate and the formulation replacing 100% FNS were compared. As a result of the experiment, the formulation using FNS had higher overall strength than the formulation using sand, and as the substitution rate of Type C fly ash increased, the strength was the best. Formulation using FNS is more fluid than using sand. Through this study, we show the possibility of 100% substitution of FNS and its applicability to secondary concrete products of by-product aggregate NSC.

  • PDF

Initial Strength Characteristics of Cementitious Gypsum-Containing Coal Gasification Slag Powder Replacement Cement Mortar (석고 혼입 석탄가스화 슬래그 미분말 치환 시멘트 모르타르의 초기강도 특성)

  • Cho, Hyeon-Seo;Kim, Min-Hyouck;Lee, Gun-Cheol;Cho, Do-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.207-208
    • /
    • 2019
  • In this study, compressive strength was measured to evaluate the initial strength of cement mortar substituted with coal gasification slag containing desulfurized gypsum, and the reactivity of desulfurized gypsum was confirmed. In order to improve the reactivity, 2% gypsum mixed type and gypsum unfedged type specimens were fabricated and the influence of desulfurization gypsum on compressive strength of coal gasification slag and blast furnace slag fine powder replacement cement mortar was compared and confirmed. As a result of the experiment, it was confirmed that the initial compressive strength of the specimen containing the desulfurized gypsum was improved at the initial stage.

  • PDF

Effect of Blastfurnace Slag Fineness on the Rheological Properties of Cement Pastes (고로슬래그 분말도가 시멘트 페이스트의 유동특성에 미치는 영향)

  • Song, Jong-Taek;You, Chang-Dal;Byun, Seung-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.2 s.297
    • /
    • pp.103-109
    • /
    • 2007
  • In this study, the rheological properties of cement pastes containing blastfurnace slag of different fineness were investigated. The fluidity of cement pastes with low Blaine value blastfurnace slag was increased with decreasing the plastic viscosity and the yield stress of pastes. And the optimum dosage of polycarboxylate type superplasticizer to the cement pastes was confirmed according to the fineness and the replacement ratio of blastfurnace slag. All cement pastes showed the thixotropy behavior. And also it was formed that the segregation range of cement pastes was occurred below $10D/cm^2$ of the yield stress and below 350 cPs of the plastic viscosity by the coaxial cylinder viscometer.

Improvement of Early Strength of Blast-Furnace Slag Blended Cement at Low Temperature (고로 슬래그 시멘트의 저온 조기 강도 증진)

  • 장복기;임용무;김윤주
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.2
    • /
    • pp.130-135
    • /
    • 1999
  • The enhanced slag fineness and the batch water of low water-to-cement ratio(W/C) were employed in order to improve the early strength of blast-furnace slag blended cement at low temperature. A grinding aid was used to grind the blast-furnace slag into the fineness of 6,280$\textrm{cm}^2$/g (Blaine), and this fine slag was then homogeneously mixed with the ordinary Portland cement to produce the blast-furnace slag blended cement containing 40% slag by weight composition. On the other hand, the batch water could be reduced from W/C=0.50 (KS L 5105) to W/C=0.33 through a commercial, naphthalene type superplasticizer. Through the method mentioned above, the early strength of the blast-furnace slag blended cement at low temperature could be enhanced even somewhat higher than the Portland cement strength. And the microsturcture of the cement was studied by both the pore structure analysis and the A.C. impedance measurement.

  • PDF