• Title/Summary/Keyword: slag cement mortar

Search Result 260, Processing Time 0.021 seconds

Applicability of Ferro-nickel Slag Sand for Dry Mortar in Floor (페로니켈슬래그 잔골재의 바닥용 건조모르타르 적용성 평가)

  • Cho, Bong-Suk;Kim, Won-Ki;Hwang, Yin-Seong;Koo, Kyung-Mo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.2
    • /
    • pp.105-112
    • /
    • 2019
  • Fine aggregate made of ferronickel slag(FNS) is similar to natural fine aggregates and is used in concrete structures both domestically and abroad, but its applications and research areas are limited. In this research, in order to expand the availability of FNS and improve the performance of cement mortar products, the applicability of FNS on dry mortar for floor was examined. Experimental results show that FNS improves flow of cement mortar because it has low absorption rate, spherical shape, and glassy surface. Also, the high stiffness of the FNS aggregate itself is considered to contribute to the improvement of cement mortar quality such as crack reduction by improving the compressive strength and shrinkage reducing. In addition, when FNS fine aggregate is applied, it was possible to secure the impact sound insulation performance equal to or higher than that of mortar using natural fine aggregate.

Adhesion in Tension of Polymer-Modified Mortars with Blast-Furnace Slag and Fly ash (고로슬래그 및 플라이애쉬를 혼입한 폴리머 시멘트 모르타르의 인장접착강도)

  • Jo, Young-Kug
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.232-233
    • /
    • 2017
  • The purpose of this study is to evaluate the Adhesion in tension of cement mortar according to adding admixtures such as polymer dispersions, blast-furnace slag and fly ash. From the test results, the adhesion in tension is seriously affected by type of polymer compared with polymer-binder ratios and types of admixture. The maximum adhesion in tension of EVA- modified mortar is about 1.46 times, the cement mortar. It is apparent that the adhesion in tension of polymer-modified mortars according to adding two admixtures is much more improved irrespective of polymer-binder ratio.

  • PDF

Prediction of expansion of electric arc furnace oxidizing slag mortar using MNLR and BPN

  • Kuo, Wen-Ten;Juang, Chuen-Ul
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.111-118
    • /
    • 2017
  • The present study established prediction models based on multiple nonlinear regressions (MNLRs) and backpropagation neural networks (BPNs) for the expansion of cement mortar caused by oxidization slag that was used as a replacement of the aggregate. The data used for the models were obtained from actual laboratory tests on specimens that were produced with water/cement ratios of 0.485 or 1.5, within which 0%, 10%, 20%, 30%, 40%, or 50% of the cement had been replaced by oxidization slag from electric-arc furnaces; the samples underwent high-temperature curing at either $80^{\circ}C$ or $100^{\circ}C$ for 1-4 days. The varied mixing ratios, curing conditions, and water/cement ratios were all used as input parameters for the expansion prediction models, which were subsequently evaluated based on their performance levels. Models of both the MNLR and BPN groups exhibited $R^2$ values greater than 0.8, indicating the effectiveness of both models. However, the BPN models were found to be the most accurate models.

A Study on the Making of Slag Cement Clinker from Reduced and Modified Converter Slag (개질전로슬래그를 활용한 슬래그 시멘트 클링커 소성에 관한 연구)

  • Park Sun-Ku;Kim Young-Whan;Ko In-Yong
    • Resources Recycling
    • /
    • v.11 no.6
    • /
    • pp.24-30
    • /
    • 2002
  • Reduced and modified converter slag was ball milled and sieved to -200/+325 mesh. CaO,$SiO_2$, $Fe_2$$O_3$ was added to slag powder and mixed to make it similar to the composition of normal portlant cement. The pellet made of this powder was heated from $1250^{\circ}C$ to $1450^{\circ}C$ for 15 min~45 min. Most feasible condition for making slag cement clinker is the heating more than 20 min at $1450^{\circ}C$. The compressive strength of the mortar made of this slag cement clinker was better than that of normal port-lant cement in long time curing.

An Experimental Study on the characteristics of Mortar Using the Ground Granulated Blast-Furnace Slag (고로서냉슬래그 미분말 사용 모르터의 물성에 관한 실험적 연구)

  • Park, Jung-Woo;Choi, Chang-Ki;Kim, Woo-Jae;Kim, Sung-Sik;Lim, Nam-Gi;Jung, Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.107-112
    • /
    • 2000
  • In this study, when ground granulated blast-furnace slag is intermixed to mortar, the strength test, watertightness test, resistance to chemical attack of hardened mortar are compared and analyzed according to the replacement rate of slag. w/(cc+Bs) and Ground Granulated Blast-furnace slag. As a result, compared with ordinary portland cement, ground granulated blast-furnace slag intermixed concrete shows development of a long term strength, chemical-resistance, and excellent watertightness.

  • PDF

Drying Shrinkage and Compressive Strength Properties of Mortar by the Blaine of Ferro-Nickel Slag Powder (페로니켈 슬래그 미분말의 분말도 변화에 따른 모르타르의 건조수축 및 압축강도 특성)

  • Kim, Young-Uk;Kim, Do-Bin;Kim, Jeong-Hyeon;Ban, Jun-Mo;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.98-99
    • /
    • 2017
  • This study investigated the drying shrinkage and compressive strength properties of mortar by the blaine of ferro-nickel slag powder to estimate the applicability of ferro-nickel slag powder for cement replacement materials. As a test result, the blaine of ferro-nickel slag powder increased, the compressive strength increased and the shrinkage rate decreased.

  • PDF

Carbonation Resistance Property of Mortar using Electrolysis Aqueous (전기분해수를 배합수로 활용한 모르타르의 탄산화 저항 특성)

  • Jeong, Su-Mi;Park, Sun-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.204-210
    • /
    • 2022
  • Cement is pointed out as the main cause of carbon dioxide emission in the construction industry. Many researchs are underway to use blast furnace slag, an industrial by-product, as a substitute for cement to reduce carbon dioxide emitted during the manufacturing the cement. When blast furnace slag is used as a substitute for cement, it has advantages such as long-term strength and chemical resistance improvement. However, blast furnace slag has a problem that makes initial strength low. This is due to the impermeable film on the surface created during the production of blast furnace slag. The created film is known to be destroyed in an alkaline environment, and based on this, previous studies have suggested a solution using various alkali activators. But, alkali activator is dangerous product since it is a strong alkaline material. And it has the disadvantage in price competitiveness. In this study, an experiment was conducted to improve the initial hydration reactivity of the blast furnace slag to secure the initial strength of the mortar substituted with the blast furnace slag and to check whether the carbonation resistance was increased. As a result of the experiment, it was confirmed that the mortar using alkaline water showed higher strength than the mortar using tap water, and there were more hydration products generated inside. In addition, it was confirmed that the mortar using alkaline water as a compounding water had high carbonation resistance.

Prediction models of compressive strength and UPV of recycled material cement mortar

  • Wang, Chien-Chih;Wang, Her-Yung;Chang, Shu-Chuan
    • Computers and Concrete
    • /
    • v.19 no.4
    • /
    • pp.419-427
    • /
    • 2017
  • With the rising global environmental awareness on energy saving and carbon reduction, as well as the environmental transition and natural disasters resulted from the greenhouse effect, waste resources should be efficiently used to save environmental space and achieve environmental protection principle of "sustainable development and recycling". This study used recycled cement mortar and adopted the volumetric method for experimental design, which replaced cement (0%, 10%, 20%, 30%) with recycled materials (fly ash, slag, glass powder) to test compressive strength and ultrasonic pulse velocity (UPV). The hyperbolic function for nonlinear multivariate regression analysis was used to build prediction models, in order to study the effect of different recycled material addition levels (the function of $R_m$(F, S, G) was used and be a representative of the content of recycled materials, such as fly ash, slag and glass) on the compressive strength and UPV of cement mortar. The calculated results are in accordance with laboratory-measured data, which are the mortar compressive strength and UPV of various mix proportions. From the comparison between the prediction analysis values and test results, the coefficient of determination $R^2$ and MAPE (mean absolute percentage error) value of compressive strength are 0.970-0.988 and 5.57-8.84%, respectively. Furthermore, the $R^2$ and MAPE values for UPV are 0.960-0.987 and 1.52-1.74%, respectively. All of the $R^2$ and MAPE values are closely to 1.0 and less than 10%, respectively. Thus, the prediction models established in this study have excellent predictive ability of compressive strength and UPV for recycled materials applied in cement mortar.

Evaluation on the Shrinkage and Durability of Cementless Alkali-Activated Mortar (무(無)시멘트 알칼리 활성(活性) 모르타르의 수축(收縮) 및 내구성(耐久性) 평가(評價))

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Lee, Jang-Hwa;Kang, Hyun-Jin
    • Resources Recycling
    • /
    • v.20 no.3
    • /
    • pp.40-47
    • /
    • 2011
  • In this study, we investigated the strength, shrinkage and durability of alkali-activated mortar using blast furnace slag only, and admixed with blast-furnace slag and fly ash as cementious materials in oder to develop cementless alkali-activated concrete. In order to compare with the alkali-activated mortar, the normal mortar using ordinary portland cement was also test. In view of the results, we found out that strength development, the resistance to shrinkage and freezing-thawing of the cementless alkali-activated mortar have better than the mortar using ordinary portland cement. Especially, using the combined with blast furnace slag and fly ash develop high strength of above 60 MPa, reduce shrinkage of about 40% and improve freezing-thawing durability of approximately 20%, but promote the velocity of carbonation of 2~3 times.

Characteristics of Mortar Mixed Nitric Acid Neutralized Red Mud by Cement Type (시멘트 종류별 질산 중화 레드머드 혼입 모르타르의 특성)

  • Kang, Suk-Pyo;Hong, Seong Uk;Kim, Sang-Jin;Hong, Seok-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.6
    • /
    • pp.693-702
    • /
    • 2023
  • This research explores the potential application of Liquid Red Mud(LRM), a byproduct of industrial processes, in the construction sector. We neutralized LRM(pH 10-12) using nitric acid, aiming to understand its viability in construction applications. The study involved substituting LRM(pH 7-8) in mortar formulations, varying by cement type. We assessed the properties of these mixtures by measuring flow, setting time, and compressive strength. Additionally, X-ray Diffraction(XRD) and Scanning Electron Microscopy(SEM) analyses were conducted to examine the chemical properties. Results indicated a reduction in flow value for LRM and LN(neutralized LRM) compared to the control (Plain ) across different cement types. The setting times(initial and final) for LRM and LN were notably shorter than Plain. In compressive strength tests, LRM replaced with slag cement showed enhanced initial strength, though long-term strength gains were marginal across different cement types. SEM analysis revealed distinct voids in Plain and LN, with LRM exhibiting a fibrous microstructure. XRD patterns in SN(slag neutralized) resembled those in OR(original red mud) and ON(original neutralized), with a notable peak at a 2θ value of 22°. The study concludes that unneutralized LRM, when substituted for slag cement in mortar, yields superior initial strength compared to its neutralized counterpart.