DOI QR코드

DOI QR Code

Evaluation on the Shrinkage and Durability of Cementless Alkali-Activated Mortar

무(無)시멘트 알칼리 활성(活性) 모르타르의 수축(收縮) 및 내구성(耐久性) 평가(評價)

  • Koh, Kyung-Taek (Structural Engineering & Bridges Research Division, Korea Institute of Construction Technology) ;
  • Ryu, Gum-Sung (Structural Engineering & Bridges Research Division, Korea Institute of Construction Technology) ;
  • Lee, Jang-Hwa (Structural Engineering & Bridges Research Division, Korea Institute of Construction Technology) ;
  • Kang, Hyun-Jin (Admixture Division, SAMPYO Corporation)
  • 고경택 (한국건설기술연구원 구조교량연구실) ;
  • 류금성 (한국건설기술연구원 구조교량연구실) ;
  • 이장화 (한국건설기술연구원 구조교량연구실) ;
  • 강현진 ((주)삼표 혼화제 사업부)
  • Received : 2011.03.04
  • Accepted : 2011.05.20
  • Published : 2011.06.26

Abstract

In this study, we investigated the strength, shrinkage and durability of alkali-activated mortar using blast furnace slag only, and admixed with blast-furnace slag and fly ash as cementious materials in oder to develop cementless alkali-activated concrete. In order to compare with the alkali-activated mortar, the normal mortar using ordinary portland cement was also test. In view of the results, we found out that strength development, the resistance to shrinkage and freezing-thawing of the cementless alkali-activated mortar have better than the mortar using ordinary portland cement. Especially, using the combined with blast furnace slag and fly ash develop high strength of above 60 MPa, reduce shrinkage of about 40% and improve freezing-thawing durability of approximately 20%, but promote the velocity of carbonation of 2~3 times.

본 논문에서는 시멘트를 전혀 사용하지 않고 결합재로서 고로슬래그를 단독으로 사용한 배합과 고로슬래그와 플라이애쉬를 혼합한 배합의 강도, 수축 및 내구성에 대해 검토하였다. 그리고 비교를 위해 보통포틀랜드시멘트를 사용한 일반 모르타르에 대해서도 동일한 실험을 수행하였다. 그 결과, 알칼리 활성 모르타르는 일반 시멘트 모르타르에 비해 강도발현, 수축 및 동결융해 저항성 측면에서 우수한 것으로 나타났다. 특히 고로슬래그와 플라이애쉬를 혼합사용한 경우에는 압축강도 60 MPa 이상 달성이 가능하고, 일반 시멘트 모르타르에 비하여 수축량은 40% 정도 감소하고 동결융해 저항성은 20% 정도 향상되나, 탄산화 속도는 2~3배 촉진되는 것으로 나타났다.

Keywords

References

  1. POSCO 홈페이지(www.posco.co.kr).
  2. 지식경제부 보도자료, 2007: 화력발전소 석탄재 재활용 길 활짝 열려.
  3. Davidovits J., 1989: Geopolymers and geopolymeric materials, Thermal Analysis and Calorimetry, 35(2).
  4. Palomo A. et al., 1991: Alkali-activated fly ashes, a cement for the future, Cement and Concrete Research, 29, pp. 1323- 1329.
  5. Fernandez-Jimenez et al., 1999: Alkali- activated slag mortars, mechanical strength behaviour, Cement and Concrete Research, 29, pp.594-604.
  6. 양근혁, 송진규, 2007: 알칼리 활성화를 이용한 무시멘트 콘크리트의 구조 성능 및 적용, 한국콘크리트학지, Vol. 19, No. 2, pp.42-48.
  7. 강현진, 고경택 외 5인, 2009: 시멘트를 사용하지 않은 플라이애시 알칼리 활성 모르타르의 압축강도에 미치는 알칼리 활성제 및 양생조건의 영향, 자원리싸이클링 제 18권 제2호, pp. 39-50
  8. Hardjito, D and Rangan, B.V, 2005: Development and Properties of Low-calcium Fly Ash-based Geopolymer Concrete, Research Report CC-1, Faculty of Engineering, Curtin Univ of Technology.
  9. 조병완, 박석민, 박승국, 2006: 알칼리 활성화에 의한 플라이애쉬 모르타르의 강도 발현 및 경화 메커니즘, 한국 콘크리트학회지, Vol.18, No.4, pp. 499-458.
  10. 고경택, 류금성, 이장화, 2010: 플라이애쉬와 고로슬래그 미분말의 혼합 사용한 무시멘트 알칼리 활성 모르터의 유동성 및 강도 특성, 한국건설순환자원학회 논문집, Vol.5, No.4, pp. 114-121.
  11. Bakharev T., 2004: Geopolymeric materials prepared using Class F fly ash and elevated temperature curing, Cement and Concrete Research, 35, pp. 1224-1232.
  12. Sanjay Kumar, Ralesh Kumar and Mehrotra S.P. 2010 : Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer, J Mater Sci, 45, pp. 607-615. https://doi.org/10.1007/s10853-009-3934-5
  13. 문영범, 이승헌, 2007: 알칼리 활성화 슬래그 시멘트 모르타르의 내황산성, 한국세라믹학회지, Vol.44 No.11, pp. 633-638.
  14. 고경택, 강수태, 박정준 외 3인, 2010: 결합재로 플라이애시와 고로슬래그의 혼합사용이 알칼리 활성 모르타르의 특성에 미치는 영향, 자원리싸이클 제19권 제4호, pp. 19-28.
  15. Palacios, M, Puertas F., 2007: Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes, Cement and Concrete Research, 37, pp. 691-702. https://doi.org/10.1016/j.cemconres.2006.11.021
  16. Collins, F.G., Sanjayan, 1999: Workability and mechanical properties of alkali-activated slag concrete, Cement and Concrete Research, 29, pp. 455-458.17. https://doi.org/10.1016/S0008-8846(98)00236-1
  17. Bakharev T. et al., 2000: Effects of admixtures on properties of alkali-activated slag concrete, Cement and Concrete Research, 30, pp. 1367-1374. https://doi.org/10.1016/S0008-8846(00)00349-5
  18. Byfors K. et al., 1989: Durability of concrete made with alkali-activated slag, Proceedings 3rd CANMET/ACI Inter. Conf., ACI SP-114, pp. 1429-1466.
  19. Puertas F. et al., 2006: Carbonation process of alkaliactivated mortars, J Mater SCI 41, pp. 3071-3082. https://doi.org/10.1007/s10853-005-1821-2
  20. Bakharev T. et al., 2001: Resistance of alkali-activated slag concrete to carbonation, Cement and Concrete Research, 31, pp. 1277-1283. https://doi.org/10.1016/S0008-8846(01)00574-9
  21. Antonio A. Meolo Neto, et al., 2008: Drying and auotogenous shrinkage of pastes and mortars with activated slag cement, Cement and Concrete Research, 38, pp. 565-574. https://doi.org/10.1016/j.cemconres.2007.11.002
  22. Neville A.M., 1995: Properties of Concrete, Fourth and Final Edition, Longman.
  23. Metha, P.K. , 1986: Concrete, Structures, Properties, and Materials, Prentice-Hall International Series in Civil Engineering and Engineering Mechanics.
  24. Powers T.C., 1945: A Working hypothesis for further studies of frost resistance of concrete, Proc. of ACI, 41.
  25. 鎌田英治, 1991 : セメント.コンクリ一ト化學とその應用, 凍結融解抵抗性/凍結作用を受けたコンクリ一トの擧動と細 孔構造, セメント協會.