• Title/Summary/Keyword: slag by-product

Search Result 202, Processing Time 0.025 seconds

The Properties of Flow and Compressive Strength of Mortar According In Replacement Ratio of Rapidly-Chilled Steel Slag Pine Aggregate (급냉 제강 슬래그 잔골재 대체율에 따른 모르타르의 유동성 및 압축강도 특성)

  • Cho Sung-Hyun;Kim Jin-Man;Kim Moon-Han;Han Ki-Suk
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.77-84
    • /
    • 2005
  • The steel slag, a by-product which is produced by refining pig iron during the manufacture of steel, is mainly used as road materials after aging. It is necessary to age steel slag for long time in air because the reaction with water and free-CaO in steel slag could make the expansion of volume. This problem prevents steel slag from being used as aggregate for concrete. However, steel slag used in this study was controled by a air-jet method which rapidly cools substance melted at a high temperature. The rapidly-chilled method would prevent from generation of free-CaO in steel slag. This study dealt with the influence of the using rate of rapidly-chilled steel slag on flow, dosage of SP, W/C ratio, and strength of mortar by statistical experimental design. Also, the results of this experiment were approved by statistical analysis methods, such as analysis of variance and F-testing. As results of F-testing, this paper proved at $1\%$ level of significance that the more the using rate of rapidly-chilled steel slag increased, the more this affected the enhancement of flow, the decrease of dosage of SP and W/C ratio, and the development of compressive strength. Also, considering the fluidity and compressive strength of mortar, it is desirable to use $75\%$ of rapidly-chilled steel slag for river sand.

Evaluation of Flexural Performance of Eco-Friendly Alkali-Activated Slag Fiber Reinforced Concrete Beams Using Sodium Activator (나트륨계 알칼리 활성화제를 사용한 친환경 알카리활성 슬래그 섬유보강콘크리트 보의 휨성능 평가)

  • Ha, Gee-Joo;Yi, Dong-Ryul;Ha, Jae-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.170-178
    • /
    • 2015
  • In this study, it was developed eco-friendly alkali-activated slag fiber reinforced concrete using ground granulated blast furnace slag, alkali activator (water glass, sodium hydroxides), and steel fiber. Eight reinforced concrete beam using alkali-activated slag concrete were constructed and tested under monotonic loading. The major variables were mixture ratio of alkali activator, mixed/without of steel fiber. Experimental programs were carried out to improve and evaluate the flexural performance of such test specimens, such as the load-displacement, the failure mode, the maximum load carrying capacity, and ductility capacity. All the specimens were modeled in scale-down size. The reinforced concrete beams using the eco-friendly alkali-activated slag fiber reinforced concrete was failed by the flexure or flexure-shear in general. In addition, the maximum strength increased with the adding the mol of sodium hydroxide, and the specimen reinforced the steel fiber showed the value of maximum strength which is increased by 15.8% through 25.9%. It is thought that eco-friendly alkali-activated slag fiber reinforced concrete can be used with construction material and product to replace normal concrete. If there is applied to structures such as precast concrete member and production of 2nd concrete product, it could be improved the productivity and reduction of construction duration etc.

Technical and economical feasibility of using GGBS in long-span concrete structures

  • Tang, Kangkang;Millard, Steve;Beattie, Greg
    • Advances in concrete construction
    • /
    • v.3 no.1
    • /
    • pp.1-14
    • /
    • 2015
  • China accounts for nearly half of the global steel production. As a waste material or a by-product in the manufacture process, a large amount of blast furnace slag is generated every year. The majority of recycled blast furnace slag is used as an additive in low-grade blended cement in China (equivalent to the UK CEM II or CEM III depending on the slag content). The cost of using ground granulated blast furnace slag (GGBS) in such low-grade applications may not be entirely reimbursed based on market research. This paper reports an on-going project at Xi'an Jiaotong-Liverpool University (XJTLU) which investigates the feasibility of using GGBS in long-span concrete structures by avoiding/reducing the use of crack control reinforcement. Based on a case study investigation, with up to 50% of CEM I cement replaced with GGBS, a beneficiary effect of reduced thermal contraction is achieved in long-span concrete slabs with no significant detrimental effect on early-age strengths. It is believed that this finding may be transferable from China to other Asian countries with similar climates and economic/environmental concerns.

A Study on the Evaluation of the Durability of Concrete Using Copper Slag Aggregates (동슬래그 골재를 함유한 콘크리트의 내구성 평가 연구)

  • Lee, Mun-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.773-784
    • /
    • 2008
  • Even if the exploitation of copper slag produced during the smelting process of copper as aggregate for construction purpose has been permitted since 2004 in Korea, the lack of sufficient data enabling to evaluate its long-term stability that is its durability has to date impeded its application. This study intends to investigate experimentally the durability characteristics of 18 and 27 MPa-class commercial concretes in which natural sand (fine aggregates) has been partially replaced by copper slag through accelerated and exposure tests so as to provide bases promoting the application of copper slag concrete. The experimental results revealed insignificant difference of the durability characteristics in most of the mix proportions in which 30% of natural sand was replaced by copper slag. In the case where crushed sand was adopted, tests verified similar characteristics for replacement ratio of 50%. Particularly, the results of the exposure test conducted during 8 years demonstrated that equivalent level of durability was secured compared to the case using natural sand. In the case of 18MPa-class lower grade concrete, exposure test verified also that the physical lifetime similar to 50 years could be secured until carbonation reaches cover depth of 20 mm.

Dynamic Properties of Hydraulic Mechanically Stabilized Slag as Railroad Material (철도노반재로서 수경성입도조정고로슬래그의 동적 물성특성)

  • 황선근;이일화;이성혁;최찬용
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.391-398
    • /
    • 1999
  • Dynamic properties of hydraulic mechanically stabilized slag(HMS25) was studied for utilizing it as a roadbed material. HMS25 is a by product material during pig iron production process. It has a very good potential application as a roadbed material. Therefore, the resonant column and torsional shear tests were carried out to evaluate the dynamic properties of HMS25 which are necessary for designing roadbed of railroad track. As a result, it was found that HMS25 has excellent dynamic properties required for roadbed material used in railroad track.

  • PDF

Sulfuric acid and Hydrochloric acid resistance properties of Light Weight Matrix Based on Blast furnace slag (고로슬래그 기반 경량 경화체의 황산 및 염산 저항 특성)

  • Kim, Weon-Jeong;Lee, Seung-Ho;Park, Sun-Gyu;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.137-138
    • /
    • 2015
  • The use of the cement and increased with the recent development of the construction industry. If the cement is the environmental problems caused by generating a large quantity of CO2 and the production process. Accordingly, this study is the test to determine the sulfuric acid and hydrochloric acid resistance properties of the Light weight matrix product of blast furnace slag-based light. A result, the compression strength of the sulfuric acid and hydrochloric acid immersion showed alower strength than the Plain.

  • PDF

An Experimental Study on the Properties of Water Cooled Blast Furnace Slag as a Fine Aggregate for Concrete (콘크리트용 잔골재로서 고로수쇄(高爐水碎)슬래그의 물성(物性)에 대한 실험적(實驗的) 연구(硏究))

  • Moon, Han Young;Choi, Yun Wang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.107-113
    • /
    • 1992
  • This paper is the part of fundamental study considering whether the unprocessed water cooled blastfurnace slag, by-product of iron works, can be useful for some fine aggregate of mortar and concrete. The acquired results in this study show that the qualities of the water cooled blastfurnace slag produced in the state of raw material in the country in not good for using as a fine aggregate of mortar and concrete. To be used as a fine aggregate of concrete the qualities need to be improved in the process of manufacture.

  • PDF

Engineering Properties of Non Shrinkage Grouter According to Replacement Ratio of Rapidly Cooled Electric Arc Furnace Oxidizing Slag (급냉 전기로 산화슬래그 대체율에 따른 무수축 그라우터의 공학적 특성)

  • Sung, JongHyun;Sun, Jung Soo;Hong, Sung;Kim, JinMan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.318-320
    • /
    • 2013
  • The spherical bead manufactured by rapidly cooling process shows high density of 3.64g/㎤, high unit volume weight of 2.6kg/l, and high solid volume of 71%. When it applies to the grouter, it is possible to obtain even high fluidity with only a small amount. This study, focusing the grouter using a rapidly-cooled electric arc furnace oxidizing slag(RC-EAFS), deals with the properties of flow and setting time in fresh state, compressive strength and length variation at 1, 3, 7 and 28 curing day in hardened state. As the results, even though the grouter with RC-EAFS shows comparative low strength, it will be possible to development the competitive product due to the properties of increasing flow and low cost.

  • PDF

Properties of concrete incorporating granulated blast furnace slag as fine aggregate

  • Patra, Rakesh Kumar;Mukharjee, Bibhuti Bhusan
    • Advances in concrete construction
    • /
    • v.5 no.5
    • /
    • pp.437-450
    • /
    • 2017
  • The present work investigates about the development of a novel construction material by utilizing Granulated Blast Furnace Slag (GBS), an industrial waste product, as substitution of natural fine aggregates. For this, experimental work has been carried out to determine the influence of GBS on the properties of concrete such as compressive strength (CS), modulus of elasticity, ultrasonic pulse velocity (UPV), chloride penetration, water absorption (WA) volume of voids (VV) and density. Concrete mixes of water/cement (w/c) ratios 0.45 and 0.5, and incorporating 20%, 40% and 60% of GBS as partial replacement of natural fine aggregate (sand) are designed for this study. The results of the experimental investigation depict that CS of concrete mixes increases with the increasing percentages of GBS. Moreover, the decrease in chloride penetration, WA and VV, and improvement in the modulus of elasticity, UPV, density of concrete is reported with the increasing percentage of GBS in concrete.

Characteristics of Eco-friendly Porous Concrete for Seawater Purification Using By-Products of Steel Industry (철강산업 부산물을 활용한 해수정화용 친환경 다공질콘크리트의 특성)

  • Han, Woonwoo;Lee, Byungjae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • As of 2018, Steel slag was generated approximately 24.23 million tons. Howeve, except blast furnace slag, steel slag is a typical by-product which does not have a clearly defined purpose in recycling. Thus, countries around the world are putting great efforts into developing a purpose for the recycling of steel slag. The vast habitat foundation of marine life has been destroyed due to recent reckless marine development and environment pollution, resulting in intensification of the decline of marine resources, and a solution to this issue is imperative. In order to propose a method to recycle large amounts of by-product slag into a material that can serve as an alternative to natural aggregate, the engineering properties and applicability for each mixing factor of environment friendly porous concrete as a material for the composition of seawater purification were in this study. Regarding the nutrient elution properties, it was clear that the nutrients continuously flowed out up to an immersion time by 8 months in natural seawater; the nitrogenous fertilizer displayed excellent elution properties in this regard.