• Title/Summary/Keyword: slag by-product

Search Result 202, Processing Time 0.024 seconds

Properties of Compressive Strength of Mortar Based on High-activated Blast Furnace Slag and Possibility of Concrete Secondary Products (고활성 고로슬래그 미분말 모르타르의 압축강도 발현 특성 및 콘크리트 2차 제품용 결합재 활용 가능성 검토)

  • Lim, Jae-Hyun;Kim, Gyu-Yong;Koo, Kyung-Mo;Kim, Hong-Seop;Yoon, Min-Ho;Lee, Bo-Kyeong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.66-67
    • /
    • 2013
  • Replacing a large amount of ground granulated blast furnace slag is limited because early age strength is low due to latent hydraulic property despite excellence of long-term strength. This study aimed to examine produceableness of high-activated ground granulated blast furnace slag using slag by-product from steel process. As experimental variable, the properties of strength development were analyzed by setting fineness and replacement ratio of slag by-product, curing conditions, and W/B. The results of study showed that high-activated ground granulated blast furnace slag using slag by-product as an activator improve the compressive strength of mortar. It is expected to be used as binder for secondary product of concrete considering curing and mixing conditions because high-activated ground granulated blast furnace slag can be hydrated by itself.

  • PDF

Evaluation of Resistance to Freezing and Thawing of Concrete using Industrial by-products Aggregate (산업부산물 골재를 사용한 콘크리트의 내동해성 평가)

  • Choi, Sung-Woo;Ryu, Deug-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.226-227
    • /
    • 2021
  • Various attempts are being made to reduce carbon emissions through recycling of industrial by-products in the construction materials industry to reduce carbon emissions, and cement substitutes such as blast furnace slag and fly ash are widely used. Although it is suggested that the use of industrial by-product aggregate is possible in 'Aggregate', the use case of industrial by-product aggregate is very rare in the actual field. In this study, as an industrial by-product, fine slag aggregate is used as fine aggregate among aggregates that can be used as aggregate for concrete, and coarse aggregate is used as a substitute for natural aggregate. WWe tried to suggest various ways to expand the use of industrial by-product aggregates.

  • PDF

Properties of Compressive Strength of Mortar Based on High-activated Blast Furnace Slag using the Slag by-product as an Activator (슬래그부산물을 자극제로 활용한 고활성 고로슬래그 미분말 모르타르의 압축강도 발현 특성)

  • Lee, Bo-Kyeong;Kim, Gyu-Yong;Koo, Kyung-Mo;Shin, Kyoung-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.1
    • /
    • pp.37-44
    • /
    • 2014
  • Recently, many efforts related to the utilization of industrial by-products have been made to reduce carbon dioxide emissions in the construction industry. Of these various efforts, concrete incorporating ground granulated blast furnace slag (BFS) provides many advantages compared to conventional concrete, such as high long-term compressive strength, improved durability and economic benefits because of its latent hydraulic property, and low compressive strength at early curing age. This paper investigates the compressive strength of high-activated ground granulated blast furnace slag blended mortar with slag by-product S type(SBP-S). The results of the experiment revealed that incorporating high-activated ground granulated blast furnace slag would affect the compressive strength of mortar. It was found that increasing the Blaine fineness and replacement ratio of slag by-product S type shows high compressive strength of mortar at early curing age because of its high $SiO_2$ and CaO contents in the slag. It is confirmed that an increase of curing age does not affect the compressive strength of mortar made with slag by-product S type at a high curing temperature. Moreover, it is possible to develop and design concrete manufactured with high-activated ground granulated blast furnace slag as binder considering the acceleration curing conditions and mix proportions.

Potential valorisation of ferrous slag in the treatment of water and wastewater: A review

  • Anjali, M.S.;Shrihari, S.;Sunil, B.M.
    • Advances in environmental research
    • /
    • v.8 no.1
    • /
    • pp.55-69
    • /
    • 2019
  • The generation of ferrous slag, an industrial by-product from the iron ore industry, results in serious environmental problems. The chemical compositions indicate 30-34% SiO2, 30-34% CaO, 18-22% Al2O3 and 0.5-0.6% Fe2O3. The specific gravity, moisture content and pH are in the range of 1.3-1.65, 9.1-10% and 8.5-9.0 respectively. The major part of the slag is composed of sand-size particles. The problems of disposal of slag could be minimized by considering its use in various environmental engineering applications providing additional value to the by-product. This paper mainly focuses on the potential utilization and valorisation of ferrous slag in both water and wastewater treatments. It is effective for the treatment of water and wastewater containing nutrients, heavy metals and polluted river/stormwater.

The Study on the Property of High Strength Concrete Used Copper Slag (동제련 슬래그 잔골재를 이용한 고강도 콘크리트의 물성에 관한 연구)

  • 박정우;김상미;강태경;백민수;임남기;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.99-104
    • /
    • 2001
  • Slag product has the possibility as alternative aggregate and sand under the circumstance of natural resource shortage. Copper slag is the by-product produced in process of copper industry. Recycling the slag in construction industry could give positive effects on the environmental preservation. This study presents that the fundamental properties of high strength concrete which used copper slag as alternative sand. Testing factors are concrete's slump, bleeding, air contents and compressive strength. The results of this study are as follows. (1) Mixing of W/C 30%, substitution rate 25% shows the best slump. As substitution rates are going up, concrete slump is uprising and air contents are downsizing. (2) The bleeding of concrete becomes more serious as substitution rates are going up. (3) The best compressive strength of copper slag concrete is achieved in mixing of W/C 30%, substitution rate 25%.

  • PDF

An Experimental Study on the Freezing and Thawing of Concrete Mixed with Steel Slag (제강 슬래그를 이용한 콘크리트의 동결융해에 대한 실험적 연구)

  • 정원섭;조성현;권기주;박성우;김진만
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.48-53
    • /
    • 2003
  • The steel slag, a by-product which is produced on the process of manufacturing steel by refining pig iron is mainly used as road materials after aging it. It is necessary to age steel slag for long time in air because the reaction with water and free-CaO in steel slag could make the volume expanded. Due to this reason it prevents steel slag from being used as aggregate of concrete. But steel slag used in this study is controled by a air-jet method which rapidly cools substance melted at a high temperature. Rapid cooling prevents from generating of free-CaO in steel slag. In this study, it was investigated that steel slag manufactured by air-jet method affects on concrete in the freezing and thawing. As results of this study, concrete mixed with steel slag was worse in the freezing and thawing than concrete mixed with sand in spite of using air entraining agent. To obtain durability of concrete in the freezing and thawing, it is desirable to mix 50% of steel slag in concrete per unit weight of volume.

  • PDF

Properties of Mortar Using Steel Slag Fine Aggregate (제강슬래그 잔골재를 사용한 모르타르 특성)

  • 조성현;한기석;박성우;권기주;오상윤;김진만
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.217-222
    • /
    • 2003
  • The steel slag, a by-product which is produced during the manufacture of steel by refining pig iron, is mainly used as road materials after aging it. It is necessary to age steel slag for long time in air because the reaction with water and free-CaO in steel slag could make the expansion of volume. This problem prevents steel slag from being used as aggregate for concrete. But steel slag used in this study was controled by an air-jet method which rapidly cools substance melted at a high temperature. Rapid cooling prevents from generation of free-CaO in steel slag. In this study, properties of steel slag manufactured by air-jet method and mortar used it were investigated. As results of this study, free-CaO contents were controled under 1%. Mortar used this steel slag demanded to lower water contents, higher compressive strength and lower drying shrinkage than the basic mortar in the same condition.

  • PDF

Application of Copper Slag as a Substitute for Sand in Sand Compaction Pile (모래다짐말뚝의 모래대체재로서 동슬래그의 활용)

  • 천병식;정헌철
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.195-207
    • /
    • 2002
  • The domestic, quantity of copper slag as a by-product at copper smelting process reaches 700,000 tons annually while its application is limited. Therefore, the secure disposal plan of copper slag is urgently required. For this reason, in this study, copper slag was used as a substitute for sand in Sand Compaction Pile that is one of the improvement methods of soft ground because the particle size distribution of copper slag ranges from 0.15mm to 5m(coarse state) and it maintains stable glassy state environmentally. The geotechnical characteristics of copper slag were evaluated through laboratory model tests and the field application of copper slag was compared with generally used sand by pilot tests. From these experimental results, copper slag's material characteristics, bearing capacity, settlement reduction and improvement effects of surrounding ground were found to be superior to generally used sand. The copper slag can be used as a substitute far sand in the Sand Compaction Pile method and as recycling material of industrial by-product with high econonical and environmental value when natural resources are being exhausted.

The Application of Converts Slag for Vertical Drains (제강슬레그의 연직배수재로서의 활용에 관한 연구)

  • 김용수;정승용;한기현;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.623-630
    • /
    • 2000
  • In this study, it was to investigate the possibility to use the converts slag, by product in producing steel as a substitute material with sand that is used fur a civil construction materials, in developing techniques to use converts slag to improve soft clay ground. To do this, it was investigated the physical and mechanical properties of the converts slag as a civil construction material. For this, cylindrical cell consolidation with a single vertical drains and large scale soil box test were performed. Through large scale soil box test, the applicability of the converts slag to the present vertical drain techniques which is dependent on sand and plastic drains was studied. As a result of that, it was found that the shape of inserted drains was maintained after completing a consolidation process of a soft clay with slag drains. In addition, we could find that the slag drains showed the similar results with sand drains in soft clay by analyzing the effect of acceleration of consolidation.

  • PDF

A Study on the Stabilization/ Solidification Process Using Blast Furnace Slag (슬래그를 이용한 중금속 이온의 고정화)

  • 강성근;방완근;이승헌;김창은
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.7
    • /
    • pp.725-733
    • /
    • 1999
  • It is a fundamental experiment to use blast-furnace slag in solidification/stabilization process. The compressive strength and leaching test of Pb and Cr doped samples were evaluated and the effects of heavy-metal ions on the hydration of slag was investigated. Sodium silicates(5wt%) was added as alkali-activator and the effects of replacing a part of slag with flyash or gypsum was also discussed. Pb ion was solidified by encapsulation of matrix. In of slag${\pm}$gypsum binder microstructure was densified by accelerating to form AFt/AFm phase and compressive strength was improved resulting in reducing leaching amount of Pb ion. Cr ion was solidified by substituting with Al ion in aluminate product. Slag+fly ash binder improved compressive strength and decreased leaching amount of Cr ion.

  • PDF