• Title/Summary/Keyword: slabs and plates

Search Result 75, Processing Time 0.018 seconds

Three-dimensional finite element analysis of reinforced concrete slabs strengthened with epoxy-bonded steel plates

  • Metwally, Ibrahim M.
    • Advances in concrete construction
    • /
    • v.2 no.2
    • /
    • pp.91-108
    • /
    • 2014
  • This paper presents a nonlinear finite element analysis (FEA) in order to investigate the flexural performance of one-way slabs strengthened by epoxy-bonded steel plates. Four point loading scheme is selectively chosen. A model is developed to implement the material constitutive relationships and non-linearity. Five Slabs were modeled in FEM software using ABAQUS. One slab was unstrengthened control slab and the others were strengthened with steel plates with varying the plate thickness and configuration. In order to verify the accuracy of the numerical model, a comparison was done between the experimental results available in the literature and the proposed equations by ACI 318-11 for the calculation of ultimate load capacities of strengthened slabs, the agreement has proven to be good and FEA attained accurate results compared with ACI code. A parametric study was also carried out to investigate the influence of thickness of steel plate, strength of epoxy layer and type of strengthening plate on the performance of plated slabs. Also, the practical and technical feasibility of splitting the steel plate in strengthening process has been taken into account. For practical use, the author recommended to use bonded steel plate as one unit rather than splitting it to parts, because this saves more effort and reduces the risk of execution errors as in the case of multiple bonded parts. Both techniques have nearly the same effect upon the performance of strengthened slabs.

Analysis of stiffened plates composed by different materials by the boundary element method

  • Fernandes, Gabriela R.;Neto, Joao R.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.605-623
    • /
    • 2015
  • A formulation of the boundary element method (BEM) based on Kirchhoff's hypothesis to analyse stiffened plates composed by beams and slabs with different materials is proposed. The stiffened plate is modelled by a zoned plate, where different values of thickness, Poisson ration and Young's modulus can be defined for each sub-region. The proposed integral representations can be used to analyze the coupled stretching-bending problem, where the membrane effects are taken into account, or to analyze the bending and stretching problems separately. To solve the domain integrals of the integral representation of in-plane displacements, the beams and slabs domains are discretized into cells where the displacements have to be approximated. As the beams cells nodes are adopted coincident to the elements nodes, new independent values arise only in the slabs domain. Some numerical examples are presented and compared to a wellknown finite element code to show the accuracy of the proposed model.

Ultimate Load of RC Structures Bonded with the Soffit Plate by p-Version Nonlinear Analysis (p-Version 비선형 해석에 의한 팻취보강된 RC구조물의 극한강도 산정)

  • 안재석;박진환;홍종현;우광성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.365-372
    • /
    • 2004
  • A new finite element model will be presented to analyze the nonlinear behavior of not only RC beams and slabs, but also RC beams strengthened by a patch repair. The numerical approach is based on the p-version degenerate shell element including theory of anisotropic laminated composites, theory of materially and geometrically nonlinear plates. In the nonlinear formulation of this model, the total Lagrangian formulation is adopted with large deflections and moderate rotations being accounted for in the sense of von Karman hypothesis. The material model is based on hardening rule, crushing condition, plate-end debonding strength model and so on. The Gauss-Lobatto numerical quadrature is applied to calculate the stresses at the nodal points instead of Gauss points. The validity of the proposed p-version finite element model is demonstrated through several numerical examples for the load-deflection curves, the ultimate loads, and the failure modes of reinforced connote slabs and RC beams bonded with steel plates or FRP plates compared with available experimental and numerical results.

  • PDF

Experimental investigation on the behaviour of UHPC-steel composite slabs under hogging moment

  • Gao, Xiao-Long;Wang, Jun-Yan;Bian, Chen;Xiao, Ru-Cheng;Ma, Biao
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.765-777
    • /
    • 2022
  • Ultra high performance concrete (UHPC) can be used in the UHPC-steel composite structures especially for bridge structures to achieve high stiffness and high fatigue resistance with low self-weight. The structural performances of UHPC-steel composite slabs subjected to hogging moment have a significant influence on the global stiffness and durability of UHPC-steel composite structures. In order to study the structural behaviors of non-steam-cured UHPC-steel composite slabs subjected to negative moment, five composite slabs combined the thin UHPC layers to steel plates via shear stud connecters with the diameter of 16mm were fabricated and tested under negative moment. The test program aimed to investigate the effect of stud spacing and longitudinal reinforcement ratios on the failure mode, load-deflection behaviors, cracking patterns, bond-slips, and carrying capacities of composite slabs subjected to negative moment. In addition, direct tensile tests for the dog-bone UHPC specimens with longitudinal reinforcement bars were carried out to study the effect of reinforcement bars on the tensile strength of UHPC in the thin structure members. Based on the experimental results, analytical models were also developed to predict the cracking load and ultimate load of UHPC-steel composite slabs subjected to negative moment.

Evaluation of Flexural Strength Capacity of Large Scale RC Slabs Strengthened with Prestressed CFRP Plate (긴장된 CFRP판으로 보강된 대규모 RC 슬래브의 휨성능 평가)

  • Hong, Ki-Nam;Han, Sang-Hoon;Lee, Byong-Ro;Gwon, Yong-Gil;Woo, Sang-Kyun
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.71-77
    • /
    • 2010
  • This paper presents the results of a study on flexural capacity of large size RC slabs strengthened with carbon fiber reinforced polymer(CFRP) plates. A total of 5 specimens of 6.0m length were tested in four point bending after strengthening them with externally bonded CFRP plates. The CFRP plates were bonded without prestress and with two prestress levels, 0.4% and 0.6% of CFRP plate strain. Test variables included the type of strengthening, prestressing level, and the effects according to each test variables are analysed. The experimental results show that proposed methods can increase significantly the flexural capacity such as strength, stiffness of the beam and the increase ranged between 36.2% and 63.2% of the load-carrying capacity of the control beams. The non-prestressed specimen failed by separation of the plate from the beam due to premature debonding while most of the prestressed specimens failed by CFRP plate fracture. And the cracking loads and maximum loads were increased proportionally to the prestress level.

Different strengthening designs and material properties on bending behavior of externally reinforced concrete slab

  • Najafi, Saeed;Borzoo, Shahin
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.3
    • /
    • pp.271-287
    • /
    • 2022
  • This study investigates the bending behavior of a composite concrete slab roof with different methods of externally strengthing using steel plates and carbon fiber reinforced polymer (CFRP) strips. First, the concrete slab model which was reinforced with CFRP strips on the bottom surface of it is validated using experimental data, and then, using numerical modeling, 7 different models of square-shaped composite slab roofs are developed in ABAQUS software using the finite element modeling. Developed models include steel rebar reinforced concrete slab with variable thickness of CFRP and steel plates. Considering the control sample which has no external reinforcement, a set of 8 different reinforcement states has been investigated. Each of these 8 states is examined with 6 different uncertainties in terms of the properties of the materials in the construction of concrete slabs, which make 48 numerical models. In all models loading process is continued until complete failure occurs. The results from numerical investigations showed using the steel plates as an executive method for strengthening, the bending capacity of reinforced concrete slabs is increased in the ultimate bearing capacity of the slab by about 1.69 to 2.48 times. Also using CFRP strips, the increases in ultimate bearing capacity of the slab were about 1.61 to 2.36 times in different models with different material uncertainties.

Structural Behavior Analysis of Two-way RC Slabs by p-Version Nonlinear Finite Element Model (p-Version 비선형 유한요소모텔에 의한 2방향 철근 콘크리트 슬래브의 역학적 거동해석)

  • Cho, Jin-Goo;Park, Jin-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.4
    • /
    • pp.15-24
    • /
    • 2005
  • This study is focused on modeling to predict the behavior of two-way RC slabs. A new finite element model will be presented to analyze the nonlinear behavior of RC slabs. The numerical approach is based on the p-version degenerate shell element including theory of anisotropic laminated composites, theory of materially and geometrically nonlinear plates. In the nonlinear formulation of this model, the total Lagrangian formulation is adopted with large deflections and moderate rotations being accounted for in the sense of von Karman hypothesis. The material model is based on the Kuper's yield criterion, hardening rule, and crushing condition. The validity of the proposed p-version nonlinear RC finite element model is demonstrated through the load-deflection curves and the ultimate loads. It is shown that the proposed model is able to adequately predict the deflection and ultimate load of two-way slabs with respect to steel arrangements and steel ratios.

A simple limit analysis procedure for reinforced concrete slabs using rigid finite elements

  • Ahmed, H.;Gilbert, M.
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.129-141
    • /
    • 2022
  • It has previously been proposed that the yield-line method of analysis for reinforced concrete slabs could be automated via the use of rigid finite elements, assuming all deformations occur along element edges. However, the solutions obtained using this approach can be observed to be highly sensitive to mesh topology. To address this, a revised formulation that incorporates modified yield criteria to account for the presence of non-zero shear forces at interfaces between elements is proposed. The resulting formulation remains simple, with linear programming (LP) still used to obtain solutions for problems involving Johansen's square yield criteria. The results obtained are shown to agree well with literature solutions for various slab problems involving uniform loading and a range of geometries and boundary conditions.

Minimum thickness of flat plates considering construction load effect

  • Hwang, Hyeon-Jong;Ma, Gao;Kim, Chang-Soo
    • Structural Engineering and Mechanics
    • /
    • v.69 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • In the construction of flat plate slabs, which are widely used for tall buildings but have relatively low flexural stiffness, serviceability problems such as excessive deflections and cracks are of great concern. To prevent excessive deflections at service load levels, current design codes require the minimum slab thickness, but the requirement could be unconservative because it is independent on loading and elastic modulus of concrete, both of which have significant effects on slab deflections. In the present study, to investigate the effects of the construction load of shored slabs, reduced flexural stiffness and moment distribution of early-age slabs, and creep and shrinkage of concrete on immediate and time-dependent deflections, numerical analysis was performed using the previously developed numerical models. A parametric study was performed for various design and construction conditions of practical ranges, and a new minimum permissible thickness of flat plate slabs was proposed satisfying the serviceability requirement for deflection. The proposed minimum slab thickness was compared with current design code provisions and numerical analysis results, and it agreed well with the numerical analysis results.

Natural Frequency of Building Slabs Supported by Elastic Beams (탄성보에 의하여 지지된 복합재료 상판의 고유 진동수)

  • 김덕현;심도식
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.227-235
    • /
    • 1998
  • A method of calculating the natural frequency corresponding to the first mode of vibration of beams and tower structures, with irregular cross-sections and with arbitrary boundary conditions was developed and reported by D. H. Kim in 1974. This method has been developed for two-dimensional problems including the laminated composite plates and was proved to be very effective for the plates with arbitrary boundary conditions and irregular sections. In this paper, the result of application of this method to the building slabs with passive and active control devices is presented. Finite difference method is used to obtain the deflection influence surfaces needed for this vibration analysis in this paper. The influence of the modulus of the foundation on the natural frequency is thoroughly studied.

  • PDF