• 제목/요약/키워드: skutterudite

검색결과 37건 처리시간 0.03초

진공밀폐 용해법으로 제조된 $La_zCo_4Sb_{12}$ Skutterudite의 열전특성

  • 박관호;유신욱;신동길;이고은;전봉준;이우만;김일호
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.321-321
    • /
    • 2013
  • 열전재료는 열과 전기의 변환이 상호 가역적으로 일어나는 현상을 갖는 재료로서, 사용온도별로 여러 가지 재료가 개발되고 있다. 중온 영역에서 우수한 열전특성을 보이는 skutterudite는 격자 내에 2개의 공극을 갖고 있고 이에 적절한 원자를 충진하여 포논산란을 유도하고, PGEC(phonon-glass and electron-crystal) 개념을 적용하여 재료의 열적인 성질과 전기적인 성질을 동시에 제어함으로써 열전성능의 향상을 도모할 수 있는 재료이다. 본 연구에서는 챔버 내부 기체를 연속적으로 뽑아내어 진공도를 유지하는 방식이 아닌, 석영관을 앰플화한 진공밀폐 용해법을 사용하였다. 진공밀폐 용해법은 성분원소의 산화와 휘발을 억제하는데 있어 매우 유용한 공정이다. 용해를 통해 얻어진 잉곳을 용해와 동일한 방법으로 석영관에 밀봉하여 873 K에서 100시간 동안 진공열처리를 실시하였다. 또한, 합성된 잉곳의 기계적 특성 향상을 위해 $75{\mu}m$ 이하로 파쇄하여 진공 열간 압축 소결하였다. La가 충진된 $La_zCo_4Sb_{12}$ Skutterudites 단일상을 합성하여 La의 충진량(z)에 따른 열전특성과 전자이동특성을 조사하였다.

  • PDF

Effect of Fe Doping on Thermoelectric Properties of Mechanically Alloyed $CoSb_3$

  • Ur, Soon-Chul;Kwon, Joon-Chul;Kim, Il-Ho
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.957-958
    • /
    • 2006
  • Fe doped skutterudite $CoSb_3$ with a nominal composition of $Fe_xCo_{1-x}Sb_{12}(0{\leq}x{\leq}2.5)$ have been synthesized by mechanical alloying (MA) of elemental powders, followed by vacuum hot pressing. Phase transformations during mechanical alloying and vacuum hot pressing were systematically investigated using XRD. Single phase skutterudite was successfully produced by vacuum hot pressing using as-milled powders without subsequent annealing. However, second phase of $FeSb_2$ was found to exist in case of $x\geq2$, suggesting the solubility limit of Fe with Co in this system. Thermoelectric properties as functions of temperature and Fe contents were evaluated for the hot pressed specimens. Fe doping up to x=1.5 with Co in $Fe_xCo_{4-x}Sb_{12}$ appeared to increase thermoelectric figure of merit (ZT) and the maximum ZT was found to be 0.78 at 525K in this study.

  • PDF

Thermoelectric Properties of Nano Structured $CoSb_3$ Synthesized by Mechanical Alloying

  • Ur, Soon-Chul;Kwon, Joon-Chul;Choi, Moon-Kwan;Kweon, Soon-Yong;Hong, Tae-Whan;Kim, Il-Ho;Lee, Young-Geun
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.665-666
    • /
    • 2006
  • Undoped $CoSb_3$ powders were synthesized by mechanical alloying (MA) of elemental powders using a nominal stoichiometric composition. Nano-structured, single-phase skutterudite $CoSb_3$ was successfully produced by vacuum hot pressing (VHP) using MA powders without subsequent annealing. Phase transformations during synthesis were investigated using XRD, and microstructure was observed using SEM and TEM. Thermoelectric properties in terms of Seebeck coefficient, electrical conductivity, thermal conductivity and figure of merit(ZT) were systematically measured and compared with the results of analogous studies. Lattice thermal conductivity was reduced owing to increasing phone scattering in nano-structured MA $CoSb_3$, leading to enhancement in the thermoelectric figure of merit. MA associated with VHP technique offers an alternative potential processing route for the process of skutterudite.

  • PDF

아크용해법으로 제조된 Skutterudite CoSb3의 열전특성 (Thermoelectric Properties of Skutterudite CoSb3 Prepared by Arc Melting)

  • 유신욱;박종범;조경원;장경욱;어순철;이정일;김일호
    • 한국재료학회지
    • /
    • 제15권2호
    • /
    • pp.93-96
    • /
    • 2005
  • The arc melting was employed to prepare undoped $CoSb_3$ compounds and their thermoelectric properties were investigated. Specimen annealed at $400^{\circ}C$ for 24 hrs showed sound microstructure. However, considerable voids and cracks were found after annealing at above $500^{\circ}C$. It seems to be attributed to the phase dissociation and thermal expansion due to phase transitions during annealing and cooling. Single phase $\delta-CoSb_3$ was successfully obtained by annealing at $400^{\circ}C$ for 24 hrs. In the case of increasing annealing temperature, phase decompositions occurred. Undoped $CoSb_3$ showed p-type conduction and intrinsic semiconducting behavior at all temperatures examined. Thermoelectric properties were remarkably improved by annealing and they were closely related to phase transitions.

고에너지 볼 밀링이 Skutterudite계 CoSb3의 열전 및 전하 전송 특성에 미치는 영향 (Effect of High-Energy Ball Milling on Thermoelectric Transport Properties in CoSb3 Skutterudite)

  • 남우현;맹은지;임영수;이순일;서원선;이정용
    • 한국전기전자재료학회논문지
    • /
    • 제28권12호
    • /
    • pp.852-856
    • /
    • 2015
  • In this study, we investigate the effect of high-energy ball milling on thermoelectric transport properties in double-filled $CoSb_3$ skutterudite ($In_{0.2}Yb_{0.1}Co_4Sb_{12}$). $In_{0.2}Yb_{0.1}Co_4Sb_{12}$ powders are milled using high-energy ball milling for different periods of time (0, 5, 10, and 20 min), and the milled powders are consolidated into bulk samples by spark plasma sintering. Microstructure analysis shows that the high-energy ball milled bulk samples are composed of nano- and micro-grains. Because the filling fractions are reduced in the bulk samples due to the kinetic energy of the high-energy ball milling, the carrier concentration of the bulk samples decreases with the ball milling time. Furthermore, the mobility of the bulk samples also decreases with the ball milling time due to enhanced grain boundary scattering of electrons. Reduction of electrical conductivity by ball milling has a decisive effect on thermoelectric transport in the bulk samples, power factor decreases with the ball milling time.

$Sn_zCo_3FeSb_{12}$의 열전특성 (Thermoelectric Properties of $Sn_zCo_3FeSb_{12}$)

  • 이재기;윤석연;정재용;이정일;어순철;김일호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.126-127
    • /
    • 2007
  • Sn-filled and Fe-doped $CoSb_3$ skutterudites were synthesized by encapsulated induction melting. Single ${\delta}$-phase was successfully obtained by subsequent annealing and confirmed by X-ray diffraction analysis. Temperature dependences of Seebeck coefficient, electrical resistivity and thermal conductivity were examined from 300 K to 700 K. The positive Seebeck coefficient confirmed the p-type conduction. Electrical resistivity increased with increasing temperature, which shows that the $Sn_zCo_3FeSb_{12}$ skutterudite is highly degenerate. Thermal conductivity was reduced by Sn-filling because the filler atoms acted as phonon scattering centers in the skutterudite lattice. Thermoelectric figure of merit was enhanced by Sn filling and its optimum filling content was considered to be z=0.3 in the $Sn_zCo_3FeSb_{12}$ system.

  • PDF

기계적 합금화법으로 제조된 나노 미세 구조 FexCo4-xSb12의 열전 특성 및 전자 이동 특성 (Thermoelectric and Electronic Transport Properties of Nano-structured FexCo4-xSb12 Prepared by Mechanical Alloying Process)

  • 김일호;권준철;어순철
    • 한국재료학회지
    • /
    • 제16권10호
    • /
    • pp.647-651
    • /
    • 2006
  • A new class of compounds in the form of skutterudite structure, Fe doped $CoSb_3$ with a nominal composition of $Fe_xCo_{4-x}Sb_{12}$ ($0{\leq}x{\leq}2.5$), were synthesized by mechanical alloying of elemental powders followed by vacuum hot pressing. Nanostructured, single-phase skutterudites were successfully produced by vacuum hot pressing using as-milled powders without subsequent heat-treatments for the compositions of $x{\leq}1.5$. However, second phase was found to form in case of $x{\geq}2$, suggesting the solubility limit of Fe with Co in this system. Thermoelectric properties including thermal conductivity from 300 to 600 K were measured and discussed. Lattice thermal conductivity was greatly reduced by introducing a dopant up to x=1.5 as well as by increasing phonon scattering in nanostructured skutterudite, leading to enhancement in the thermoelectric figure of merit. The maximum figure of merit was found to be 0.32 at 600 K in the composition of $Fe_xCo_{4-x}Sb_{12}$.

$In_zCo_{4-x}Ni_xSb_{12}$

  • 홍성정;정재용;이정일;어순철;김일호
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2007년도 추계학술발표대회 및
    • /
    • pp.120.1-120.1
    • /
    • 2007
  • PDF