DOI QR코드

DOI QR Code

Effect of High-Energy Ball Milling on Thermoelectric Transport Properties in CoSb3 Skutterudite

고에너지 볼 밀링이 Skutterudite계 CoSb3의 열전 및 전하 전송 특성에 미치는 영향

  • Nam, Woo Hyun (Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS)) ;
  • Meang, Eun-Ji (Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Lim, Young Soo (Department of Materials System Engineering, Pukyong National University) ;
  • Lee, Soonil (Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Seo, Won-Seon (Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Jeong Yong (Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS))
  • 남우현 (기초과학연구원 나노물질 및 화학반응연구단) ;
  • 맹은지 (한국세라믹기술원 에너지환경소재본부) ;
  • 임영수 (부경대학교 신소재시스템공학과) ;
  • 이순일 (한국세라믹기술원 에너지환경소재본부) ;
  • 서원선 (한국세라믹기술원 에너지환경소재본부) ;
  • 이정용 (기초과학연구원 나노물질 및 화학반응연구단)
  • Received : 2015.11.19
  • Accepted : 2015.11.24
  • Published : 2015.12.01

Abstract

In this study, we investigate the effect of high-energy ball milling on thermoelectric transport properties in double-filled $CoSb_3$ skutterudite ($In_{0.2}Yb_{0.1}Co_4Sb_{12}$). $In_{0.2}Yb_{0.1}Co_4Sb_{12}$ powders are milled using high-energy ball milling for different periods of time (0, 5, 10, and 20 min), and the milled powders are consolidated into bulk samples by spark plasma sintering. Microstructure analysis shows that the high-energy ball milled bulk samples are composed of nano- and micro-grains. Because the filling fractions are reduced in the bulk samples due to the kinetic energy of the high-energy ball milling, the carrier concentration of the bulk samples decreases with the ball milling time. Furthermore, the mobility of the bulk samples also decreases with the ball milling time due to enhanced grain boundary scattering of electrons. Reduction of electrical conductivity by ball milling has a decisive effect on thermoelectric transport in the bulk samples, power factor decreases with the ball milling time.

Keywords

References

  1. G. A. Slack, New Materials and Performance Limits for Thermoelectric Cooling (CRC Press, Boca Raton, 1995) p. 407. [DOI: http://dx.doi.org/10.1201/9781420049718.ch34]
  2. X. Shi, J. Yang, J. R. Salvador, M. Chi, J. Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, and L. Chen, J. Am. Chem. Soc., 133, 7837 (2011). [DOI: http://dx.doi.org/10.1021/ja111199y]
  3. H. Li, X. F. Tang, Q. J. Zhang, and C. Uher, Appl. Phys. Lett., 94, 102114 (2009). [DOI: http://dx.doi.org/10.1063/1.3099804]
  4. J. Yang, W. Zhang, S. Q. Bai, Z. Mei, and L. D. Chen, Appl. Phys. Lett., 90, 192111 (2007). [DOI: http://dx.doi.org/10.1063/1.2737422]
  5. B. L. Yu, X. F. Tang, Q. J. Zhang, T. X. Liu, P. F. Luo, and J. Wang, 22nd International Conference on Thermoelectrics (International Conference on Thermoelectrics, 2003) p. 101.
  6. L. Zhang, A. Grytsiv, M. Kerber, P. Rogl, E. Bauer, M. J. Zehetbauer, J. Wosik, and G. E. Nauer, J. Alloy. Compd., 29, 106 (2009). [DOI: http://dx.doi.org/10.1016/j.jallcom.2009.03.109]