• Title/Summary/Keyword: skin measurement

Search Result 625, Processing Time 0.024 seconds

Effects of solvents on the anti-aging activity of Salvia miltiorrhiza extract (추출용매에 따른 단삼 추출물의 항노화 활성)

  • Guo, nan;Lee, Ji-An
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.5
    • /
    • pp.290-297
    • /
    • 2022
  • This study was conducted to determine the cell cytotoxicity, astringency, nitrite oxide scavenging, iNOS protein expression level, pro-inflammatory cytokine, elastase inhibition, and type I pro-collagen synthesis as a functional cosmetics material of Salvia miltiorrhiza root. We prepared the 80% ethanol(SE) and hot-distilled water(SW), respectively. Both SE and SW showed no toxicity from 0.05 to 0.5 mg/mL concentration as a result of MTT assay in NHDF or RAW264.7 cells. In the measurement of astringent effect, SE reveled 74.6% of astringent activity in 10 mg/mL. SE showed that LPS-induced nitric oxide production, iNOS protein expression, and cytokines were inhibited in a dose-dependent manner. Furthermore, two extracts significantly inhibited elastase activity and increased the type I pro-collagen production. Therefore, it is expected that Salvia miltiorrhiza extract is used as a natural material for functional cosmetics that can effectively prevent skin-related inflammation and wrinkles, and aging.

Changes in the visual display terminal syndrome of college students in online classes during the COVID-19 pandemic (COVID-19 팬데믹 상황에서 온라인 수업 중인 대학생의 영상표시단말기 증후군의 변화)

  • Jang, Keong Sook;Jung, Young-Mi
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.29 no.1
    • /
    • pp.60-71
    • /
    • 2023
  • Purpose: The purpose of this study was to identify changes in the experience rate and level of symptoms of visual display terminal syndrome in college students attending online classes during the COVID-19 pandemic. Methods: Data were collected from February 22 to June 8, 2021 at three measurement points. A total of 117 college students were administered a visual display terminal syndrome survey just before online classes (T1), one month after the start of online classes (T2), and three months after the start of online classes (T3). The collected data were analyzed by frequency and percentage, paired t-test, McNemar test, and repeated measures analysis of variance using the IBM SPSS 25.0 program. Results: The intensity of college students' visual display terminal syndrome during online classes increased at T2 and T3 compared to T1. The rate of experiencing back discomfort or pain increased abruptly at T2 compared to T1. The intensity of college students' eye related symptoms and skin related symptoms increased at T2 and T3 compared to T1, while the intensity of college students' psychological symptoms, general body discomfort, and musculoskeletal symptoms increased at T3 compared to T1. Conclusion: The results of this study suggest that self-care programs are needed to prevent visual display terminal syndrome in college students who are in long-term online classes.

Blue-Light Hazards of 405 nm Sterilization LED Lamps (405 nm 살균용 UV LED 등기구의 청색광 위해에 관한 연구)

  • Hyeon-seok Heo;Chung-hyeok Kim;Ki-ho Nam;Jin-sa Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.3
    • /
    • pp.266-274
    • /
    • 2023
  • Recently, sterilization technology has received increasing interest due to the COVID-19 pandemic and required safety precautions. Particularly, sterilization devices using near ultraviolet (UV) with a 405 nm wavelength are also drawing attention. It has a UV-C wavelength and other sterilization effects. Its blue-colored light on the boundary between UV and visible light is used as a light-emitting diode (LED) lamp for 405 nm sterilization, owing to its longer wavelengths than UV rays. However, the 405 nm wavelength contains blue light that can damage the eyes and skin during prolonged exposures and affect the emotional and biological parts of the body. Currently, 405 nm sterilization LED light registers are circulating in the market. However, they have not undergone safety tests for blue-light hazards. Thus, with the active distribution of sterilization LED lights, solid safety standards and management systems are essential to protect users from blue-light hazards. Accordingly, in this study, we conducted spectral radiance and spectral radiative luminance tests on 405 nm sterilization LED registers available in the market by the measurement criteria of IEC 62471. Safety standards must be established to secure users' safety against blue light hazards at a time when 405nm sterilization LED lights are actively distributed due to COVID-19.

The Effectiveness of 448-kHz Capacitive Resistive Monopolar Radiofrequency for Subcutaneous Fat Reduction in a Porcine Model

  • Kwon, Tae-Rin;Lee, Sung-Eun;Kim, Jong Hwan;Jeon, Yong Jae;Jang, You Na;Yoo, Kwang Ho;Kim, Beom Joon
    • Medical Lasers
    • /
    • v.8 no.2
    • /
    • pp.64-73
    • /
    • 2019
  • Background and Objectives The effectiveness of many physiotherapy modalities in reducing subcutaneous fat has been investigated in numerous previous studies. However, to the best of our knowledge, there have been no attempts to determine the effectiveness of physiotherapy modalities in body contouring. The present report determined the effect of 448-kHz capacitive resistive monopolar radiofrequency (CRMRF) in a porcine model. Materials and Methods This study investigated the effect of selective destruction of the subcutaneous fat layer in abdominal fat tissue using CRMRF. The effects of two types of CRMRF (capacitive electric transfer (CET) and resistive electric transfer (RET)) treatment were evaluated using regular digital photography in addition to thermal imaging evaluation, ultrasound measurement, hematological evaluation, and histologic analyses (H&E (hematoxylin and eosin), Oil red O, and immunohistochemistry staining). Results Preclinical evaluation was performed to obtain the data for comparison of the safety and efficacy of the subcutaneous fat reduction after applying CRMRF using CET and RET. After treatment, the thermal transmission was effective, and a 42-47℃ temperature change was observed in the fat layer while an approximately temperature of 42℃ was confirmed on the skin surface. Moreover, after the application of both types of CRMRF treatment, fibrotic septa were observed in the adipose tissue induced by heat at the treatment sites. TUNEL staining was also performed to confirm the process of apoptosis in the adipocytes. Conclusion These results suggest that both CET and RET for CRMRF treatment are safe and effective for subcutaneous fat reduction in a porcine model.

Performance and Stability Evaluation of Muscle Activation (EMG) Measurement Electrodes According to Layer Design (근활성도(EMG) 측정 전극 레이어 설계에 따른 성능 및 안정성 평가)

  • Bon-Hak Koo;Dong-Hee Lee;Joo-Yong Kim
    • Science of Emotion and Sensibility
    • /
    • v.26 no.4
    • /
    • pp.41-50
    • /
    • 2023
  • This study aims to develop electromyography (EMG) textile electrodes and assess their performance and signal stability by examining variations in layer count and fabric types. We fabricated the electrodes through layering and pressing techniques, focusing on configurations with different layer counts (Layer-0, Layer-1, and Layer-2). Our findings indicate that layer presence significantly influences muscle activation measurements, with enhanced performance correlated with increased layer numbers. Subsequently, we created electrodes from five distinct fabrics (neoprene, spandex cushion, 100% polyester, nylon spandex, and cotton canvas), each maintaining a Layer-2 structure. In performance tests, nylon spandex fabric, particularly heavier variants, outperformed others, while the spandex cushion electrodes showed superior stability in muscle activation signal acquisition. This research elucidates the connection between electrode performance and factors like layer number and electrode-skin contact area. It suggests a novel approach to electrode design, focusing on layer properties and targeted pressure application on specific sensor areas, rather than uniformly increasing sleeve pressure.

8MHz RF Capacitive Heating on Rabbit Lung (가토의 정상폐의 고주파 유전형 가온에 관한 연구)

  • Jang, Hong, Seok;Kim, Jong-Woo
    • Radiation Oncology Journal
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 1992
  • The usefulness of hyperthermia for cancer therapy has been established. The purpose of the present investigation was to access feasibility of heating normal lung and the temperature and power requirement were compared with that for liver as solid organ in rabbits by using radiofrequent heating machine. In this study, 20 rabbits were divided into 2 groups according to the heating site and the method of temperature measurement; in group I : lung heating and temperature measuring in skin, esophagus and lung parenchyme; in group II : liver heating and temperature measuring in skin and liver parenchyme. The results were as follows; 1) When the maximum temperature was almost same in lung heating group and liver heating group, the power for liver heating was lesser required than the power for lung heating (p<0.05). 2) The temperature of esophagus for the measurement of mediastinum temperature was $1.1{\pm}0.9^{\circ}C$ higher than the temperature of lung parenchyme (p<0.05). Therefore the above findings suggest lung, air containing organ, is well heated as same as liver, solid organ. So more active trials of lung heating in the lung cancer must be likely considered. But when the lung is heated, the esophageal temperature is higher than lung parenchyme, so the mediastinum damage must be considered seriously.

  • PDF

The Effect of Aquaplast on Surface Dose of Photon Beam (Aquaplast가 광자선의 표면선량에 미치는 영향)

  • Oh, Do-Hoon;Bae, Hoon-Sik
    • Radiation Oncology Journal
    • /
    • v.13 no.1
    • /
    • pp.95-100
    • /
    • 1995
  • Purpose : To evaluate the effect on surface dose due to Aquaplast used for immobilizing the patients with head and neck cancers in photon beam radiotherapy Materials and Methods: To assess surface and buildup region dose for 6MV X-ray from linear accelerator(Siemens Mevatron 6740), we measured percent ionization value with the Markus chamber model 30-329 manufactured by PTW Frieburg and Capintec electrometer, model WK92. For measurement of surface ionization value, the chamber was embedded in $25{\times}25{\times}3cm^3$ acrylic phantom and set on $25{\times}25{\times}5cm^3$ polystyrene phantom to allow adequate scattering. The measurements of percent depth ionization were made by placing the polystyrene layers of appropriate thickness over the chamber. The measurements were taken at 100cm SSD for $5{\times}5cm^2$, $10{\times}10cm^2$ and $15{\times}15cm^2$ field sizes, respectively. Placing the layer of Aquaplast over the chamber, the same procedures were repeated. We evaluated two types of Aquaplast: 1.6mm layer of original Aquaplast(manufactured by WFR Aquaplast Corp.) and transformed Aquaplast similar to moulded one for immobilizing the patients practically. We also measured surface ionization values with blocking tray in presence or absence of transformed Aquaplast. In calculating percent depth dose, we used the formula suggested by Gerbi and Khan to correct overresponse of the Markus chamber. Results : The surface doses for open fields of $5{\times}5cm^2$, $10{\times}10cm^2$, and $15{\times}15cm^2$ were $79\%$, $13.6\%$, and $18.7\%$, respectively. The original Aquaplast increased the surface doses upto $38.4\%$, $43.6\%$, and $47.4\%$, respectively. For transformed Aquaplast, they were $31.2\%$, $36.1\%$, and $40.5\%$, respectively. There were little differences in percent depth dose values beyond the depth of Dmax. Increasing field size, the blocking tray caused increase of the surface dose by $0.2\%$, $1.7\%$, $3.0\%$ without Aquaplast, $0.2\%$, $1.9\%$, $3.7\%$ with transformed Aquaplast, respectively. Conclusion: The original and transformed Aquaplast increased the surface dose moderately. The percent depth doses beyond Dmax, however, were not affected by Aquaplast. In conclusion, although the use of Aquaplast in practice may cause some increase of skin and buildup region dose, reductioin of skin-sparing effect will not be so significant clinically.

  • PDF

A Study on the Cosmeceutical activities of Prunus Sargentii R. (산벚나무(Prunus sargentii R.) 수피의 화장품활성에 관한 연구)

  • Park, Jung-Mi;Lee, Jin-Young;Park, Tae-Soon;Hyun, Sok-Jun;Kim, Han-Hyuk;Cho, Young-Je;Kwon, O-Jun;Son, Ae-Ryang;Kim, Dong-Seok;An, Bong-Jeun
    • Applied Biological Chemistry
    • /
    • v.51 no.1
    • /
    • pp.70-78
    • /
    • 2008
  • Prunus sargentii R. of Rosaceae familiy, has been reported to have radical scavenging activity and anti-inflammatory effect. On these facts, biological activity and safety test were conducted to evaluate biological activities of the extracts of P. sargentii R. as a potential pharmaceutical ingredient. The electron donating ability of its ethanol extracts at a 500 ppm level showed 92%, which was higher than that of hot water extract (59%), the superoxide dismutase (SOD)-like activity of the water extract of P. sargentii R. was about 50%, the ethanol extract of P. sargentii R. was about 40% at 1,000 ppm concentration. Xanthine oxidase inhibition by the water extract of P. sargentii R. was about 40% and that by the ethanol extract was 60% respectively at 500 ppm concentration. From the measurement on lipid oxidation, the $Cu^{2+}$ chelating effect of the ethanol extract was higher than that of hot water extract. The $Fe^{2+}$ chelating effect was also shown to be about 80% at a 500 ppm concentration in both hot water extract and ethanol extract. The tyrosinase inhibition effect related to skin-whitening was 26% by hot water extract and 20% by ethanol extract respectively at a 1,000 ppm. Hyaluronidase inhibition activity related to the anti-inflammation effect was 96% in ethanolic extract at a 500 ppm. Clear zones formed by P. sargentii R. against the human skin-resident micro-flora such as Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Propionibacterium acnes indicated that antimicrobial activity of the ethanol extract was higher than that of the hot water extract.

Evaluation of the Usefulness of the Transmittance of Metal Filaments Fabricated by 3D Printers in Radiation Therapy (방사선 치료에서 3D 프린터로 제작된 금속 필라멘트의 투과율에 관한 유용성 평가)

  • Kwon, Kyung-Tae;Jang, Hui-Min;Yoon, Myeong-Seong
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.7
    • /
    • pp.965-973
    • /
    • 2021
  • Since radiation therapy is irradiated with high-energy X-rays in a variety of at least 20 Gy to 80 Gy, a high dose is administered to the local area where the tumor is located, and various side effects of some normal tissues are expected. Currently, in clinical practice, lead, a representative material, is used as an effort to shield normal tissues, but lead is classified as a heavy metal harmful to the human body, and a large amount of skin contact can cause poisoning. Therefore, this study intends to manufacture a measurement sheet that can compensate for the limitations of lead using the materials Tungsten, Brass, and Copper of the 3D printer of the FDM (Fused Deposition Modeling) method and to investigate the penetration performance. Tungsten mixed filament transmission measurement sheet size was 70 × 70 mm and thickness 1, 2, 4 mm using a 3D printer, and a linear accelerator (TrueBeam STx, S/N: 1187) was measured by irradiating 100 MU at SSD 100 cm and 5 cm in water using a water phantom, an ion chamber (FC-65G), and an elcetrometer (PTW UNIDOSE), and the permeability was evaluated. As a result of increasing the measurement sheet of each material by 1 mm, in the case of Tungsten sheet at 3.8 to 3.9 cm in 6 MV, the thickness of the lead shielding body was thinner than 6.5 cm, and in case of Tungsten sheet at 4.5 to 4.6 cm in 15 MV. The sheet was thinner than the existing lead shielding body thickness of 7 cm, and equivalent performance was confirmed. Through this study, the transmittance measurement sheet produced using Tungsten alloy filaments confirmed the possibility of transmission shielding in the high energy region. It has been confirmed that the usability as a substitute is also excellent. It is thought that it can be provided as basic data for the production of shielding agents with 3D printing technology in the future.

Evaluation of Radiation Exposure to Nurse on Nuclear Medicine Examination by Use Radioisotope (방사성 동위원소를 이용한 핵의학과 검사에서 병동 간호사의 방사선 피폭선량 평가)

  • Jeong, Jae Hoon;Lee, Chung Wun;You, Yeon Wook;Seo, Yeong Deok;Choi, Ho Yong;Kim, Yun Cheol;Kim, Yong Geun;Won, Woo Jae
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.21 no.1
    • /
    • pp.44-49
    • /
    • 2017
  • Purpose Radiation exposure management has been strictly regulated for the radiation workers, but there are only a few studies on potential risk of radiation exposure to non-radiation workers, especially nurses in a general ward. The present study aimed to estimate the exact total exposure of the nurse in a general ward by close contact with the patient undergoing nuclear medicine examinations. Materials and Methods Radiation exposure rate was determined by using thermoluminescent dosimeter (TLD) and optical simulated luminescence (OSL) in 14 nurses in a general ward from October 2015 to June 2016. External radiation rate was measured immediately after injection and examination at skin surface, and 50 cm and 1 m distance from 50 patients (PET/CT 20 pts; Bone scan 20 pts; Myocardial SPECT 10 pts). After measurement, effective half-life, and total radiation exposure expected in nurses were calculated. Then, expected total exposure was compared with total exposures actually measured in nurses by TLD and OSL. Results Mean and maximum amount of radiation exposure of 14 nurses in a general ward were 0.01 and 0.02 mSv, respectively in each measuring period. External radiation rate after injection at skin surface, 0.5 m and 1 m distance from patients was as following; $376.0{\pm}25.2$, $88.1{\pm}8.2$ and $29.0{\pm}5.8{\mu}Sv/hr$, respectively in PET/CT; $206.7{\pm}56.6$, $23.1{\pm}4.4$ and $10.1{\pm}1.4{\mu}Sv/hr$, respectively in bone scan; $22.5{\pm}2.6$, $2.4{\pm}0.7$ and $0.9{\pm}0.2{\mu}Sv/hr$, respectively in myocardial SPECT. After examination, external radiation rate at skin surface, 0.5 m and 1 m distance from patients was decreased as following; $165.3{\pm}22.1$, $38.7{\pm}5.9$ and $12.4{\pm}2.5{\mu}Sv/hr$, respectively in PET/CT; $32.1{\pm}8.7$, $6.2{\pm}1.1$, $2.8{\pm}0.6$, respectively in bone scan; $14.0{\pm}1.2$, $2.1{\pm}0.3$, $0.8{\pm}0.2{\mu}Sv/hr$, respectively in myocardial SPECT. Based upon the results, an effective half-life was calculated, and at 30 minutes after examination the time to reach normal dose limit in 'Nuclear Safety Act' was calculated conservatively without considering a half-life. In oder of distance (at skin surface, 0.5 m and 1 m distance from patients), it was 7.9, 34.1 and 106.8 hr, respectively in PET/CT; 40.4, 199.5 and 451.1 hr, respectively in bone scan, 62.5, 519.3 and 1313.6 hr, respectively in myocardial SPECT. Conclusion Radiation exposure rate may differ slightly depending on the work process and the environment in a general ward. Exposure rate was measured at step in the general examination procedure and it made our results more reliable. Our results clearly showed that total amount of radiation exposure caused by residual radioactive isotope in the patient body was neglectable, even comparing with the natural radiation exposure. In conclusion, nurses in a general ward were much less exposed than the normal dose limit, and the effects of exposure by contacting patients undergoing nuclear medicine examination was ignorable.

  • PDF