• 제목/요약/키워드: skin fibroblast cell

검색결과 199건 처리시간 0.027초

경옥고(瓊玉膏)의 열 스트레스에 의한 피부노화 억제 활성 (Resistance Activity of Kyung-Ok-Ko on Thermal Stress in C. elegans)

  • 정원석;조성영;조현우;이희운;정영일;김희택;유영법
    • 한방안이비인후피부과학회지
    • /
    • 제37권1호
    • /
    • pp.17-28
    • /
    • 2024
  • Objectives : This study was conducted to reveal the scientific mechanism of the anti-skin aging activity of Kyung-Ok-Ko(KOK), which is highly useful as a Korean traditional medicine and functional food. Methods : The skin wrinkle and aging inhibitory activity of KOK was confirmed through in vitro experiments of human dermal fibroblast neonatal cell(HDFn) and in vivo of C. elegans, and hairless mouse(SKH-1). Results : The amount of the C-terminus of the collagen precursor in the HDFn cell culture medium treated with KOK using an enzymes-linked immunoassay kit. The group treated with KOK 200㎍/㎖ was a 28.3% increase of collagen precursor compared to the control group. KOK showed inhibitory activity of MMP-1 compared to the control group at a concentration of 200㎍/㎖. In addition, KOK 200㎍/㎖ showed significant inhibitory activity of thermal stress and an oxidative stress compared to the control group in C. elegans. Furthermore, KOK showed a concentration-dependent(100mg/kg and 500mg/kg) anti-wrinkle formation effect in UV-irradiated hairless mouse(SKH-1). Additionally, when KOK was administered to UV-irradiated hairless mice, an increase in procollagen -1 and -3 genes expression was observed, and mmp-1 and mmp-9 genes, which increase collagen decomposition, decreased with the administration of KOK. Conclusions : The skin aging inhibition mechanism of Kyung-Ok-Ko(KOK) is presumed to be achieved through suppressing thermal stress and oxidative stress, suppressing mmp-1 and mmp-9 genes, and increasing procollagen-1 and procollagen-3.

마 에탄올추출물의 피부 collagen 합성 촉진 및 MMPs 활성 억제효과 (Ethanol Extract of Dioscorea batatas Stimulates Procollagen Production and Reduces UVB-induced MMPs Activity in Skin)

  • 김대성;전병국;임난영;문연자;이영은;우원홍
    • 동의생리병리학회지
    • /
    • 제27권2호
    • /
    • pp.183-188
    • /
    • 2013
  • Ultraviolet (UV) B irradiation induces the production of matrix metalloproteinases (MMPs), which are responsible for the degradation or synthesis inhibition of collagenous extracellular matrix in connective tissues, causing skin photoaging. In this study, we examined the inhibitory effect of MMP-1 expression of yam extract in tumor necrosis factor-alpha (TNF-${\alpha}$)-stimulated human dermal fibroblast neonatal (HDFn) cell and preventive effect of UVB-induced damage in hairless mice skin. The synthesis of procollagen and the release of MMP-1 in HDFn cells were measured by EIA kit and MMP-1 assay kit, respectively. UVB radiation was applied to the backs of the mice three times a week for 8 weeks. Mice were randomly divided into three groups, and were topical application with the Dioscorea batatas (DB, 6%) or vehicle. Reduction of TNF-${\alpha}$-induced procollagen synthesis was increased by DB (50 ug/ml), which was higher than positive control group (TGF-${\beta}$). Also, pre-treatment of HDFn cells with DB inhibited TNF-${\alpha}$-induced release of MMP-1. In vivo study, we found that preventive effect of DB against UV-induced epidermal thickness. DB suppressed the expression of MMP-3 and MMP-13 induced by UVB irradiation. Our results show that DB have preventive effect of UV-induced skin damage in hairless mice.

The Effect of a Long-Term Cyclic Strain on Human Dermal Fibroblasts Cultured in a Bioreactor on Chitosan-Based Scaffolds for the Development of Tissue Engineered Artificial Dermis

  • Lim, Sae-Hwan;Son, Young-Sook;Kim, Chun-Ho;Shin, Heung-Soo;Kim, Jong-Il
    • Macromolecular Research
    • /
    • 제15권4호
    • /
    • pp.370-378
    • /
    • 2007
  • Mechanical stimulation is known to activate several cellular signal transduction pathways, leading to the induction of signaling molecules and extracellular matrix (ECM) proteins, thereby modulating cellular activities, such as proliferation and survival. In this study, primary human dermal fibroblasts (HDFs) were seeded onto chitosan-based scaffolds, and then cultured for 3 weeks in a bioreactor under a cyclic strain of 1 Hz frequency. Compared to control samples cultured under static conditions, the application of a cyclic strain stimulated the proliferation of HDFs in I week, and by week 3 the thickness of the cell/scaffold composites increased 1.56 fold. Moreover, immunohistochemical staining of the culture media obtained from the cell/scaffold samples subjected to the cyclic strain, revealed increases in the expression and secretion of ECM proteins, such as fibronectin and collagen. These results suggest that the preconditioning of cell/scaffold composites with a cyclic strain may enhance the proliferation of HDFs, and even facilitate integration of the engineered artificial dermal tissue into the host graft site.

라벤더 오일이 UV-B로 조사된 마우스의 Nitric oxide 생성에 미치는 영향 (Effect of Lavender (Lavendular officinalis) Essential Oil on Nitric Oxide Production in UVB-irradiated mice)

  • 송선영;이현화
    • 통합자연과학논문집
    • /
    • 제1권1호
    • /
    • pp.41-46
    • /
    • 2008
  • The aim of this study is to evaluate the effects essential oil from Lavendular officinalis on the production of UVB-irradiated-induced nitric oxide(NO), in vivo and in vitro. NO is a recently discovered mediator of cell communication involved in a variety of physiological and pathophysiological processes. This enzyme is present in various tissues including smooth muscle cells and macrophages and take part in several immunopathological process. In vitro, the cytotoxicity and cell viability of aroma oil was evaluated by the MTT assay in the concentration of 0.01, 0.05, 0.1%. And, the effect of aroma oil was investigated to production of NO in human fibroblast cells line CCD-986sk ($2{\times}10^5$ cell/well) after UVB-irradiation with aroma oil (0.01, 0.1, and 1%). The result showed that aroma oil did not affected the production of NO. In vivo, it was investigated to production of NO after UVB- irradiation with aroma oil. The experimental groups were divided into four groups. Aroma oil was stimulated the production of NO by itself. As the results, all of the in vitro and in vivo, aroma oil were affected production of NO by dependent the concentration-manners.

  • PDF

Developmental Efficiency of Bovine Embryos Cloned with Fetal Fibroblast Arrested at G0/G1 Phase

  • Cho, S.R.;Son, W.J.;Park, C.S.;Park, G.J.;S.Y. Choe
    • 한국발생생물학회:학술대회논문집
    • /
    • 한국발생생물학회 2003년도 제3회 국제심포지움 및 학술대회
    • /
    • pp.140-140
    • /
    • 2003
  • The study evaluated the effect of donor cell treatments for G0/Gl synchronization and the donor ceil type on development and incidence of apoptosis in cloned cattle embryos. Primary cultures were established from a female fetus on day 50 of gestation and adult ear skin biopsies. Cells were randomly allocated into 3 experimental treatment groups after 6~8 passages. Group 1 (Confluent), cells were cultured in DMEM supplemented with 10% FBS until 90% confluent. Group 2 (Serum-starvation), cells were cultured in DMEM Supplemented With 0.5% FBS for 5 days. Group 3 (Roscovitine), Cells were cultured in DMEM supplemented with 10% FBS and 30 $\mu$M Roscovitine for 12 h. Cell cycle and apoptosis were analyzed using flow cytometry after labelling with DAPI and YO-PRO-1. At 19 h post-maturation (hpm), enucleated oocytes were reconstructed with donor cells and fused by a single DC pulse (1.6 kV/cm, 60 $\mu$sec). (중략)

  • PDF

인공피부 개발을 위한 생채 적합성 지지체에 관한 연구

  • 김창환;김천호;박현숙;강현주;한은숙;김윤영;최영주;이수현;최태부;손영숙
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 추계학술발표대회 및 bio-venture fair
    • /
    • pp.429-432
    • /
    • 2000
  • 생체 적합성, 생분해성, 항균성 등의 특징을 갖는 키토산 지지체는 type I -p collagen과 bFGF 또는 fibronectin을 함께 코팅함으로써 세포적합성을 향상시켜 섬유아세포의 증식과 ECM의 분비를 증가시킬 수 있으며, 인공피부를 위한 적합한 지지체로 사용될 수 있다고 사료된다.

  • PDF

KCl Mediates $K^+$ Channel-Activated Mitogen-Activated Protein Kinases Signaling in Wound Healing

  • Shim, Jung Hee;Lim, Jong Woo;Kim, Byeong Kyu;Park, Soo Jin;Kim, Suk Wha;Choi, Tae Hyun
    • Archives of Plastic Surgery
    • /
    • 제42권1호
    • /
    • pp.11-19
    • /
    • 2015
  • Background Wound healing is an interaction of a complex signaling cascade of cellular events, including inflammation, proliferation, and maturation. $K^+$ channels modulate the mitogen-activated protein kinase (MAPK) signaling pathway. Here, we investigated whether $K^+$ channel-activated MAPK signaling directs collagen synthesis and angiogenesis in wound healing. Methods The human skin fibroblast HS27 cell line was used to examine cell viability and collagen synthesis after potassium chloride (KCl) treatment by Cell Counting Kit-8 (CCK-8) and western blotting. To investigate whether $K^+$ ion channels function upstream of MAPK signaling, thus affecting collagen synthesis and angiogenesis, we examined alteration of MAPK expression after treatment with KCl (channel inhibitor), NS1619 (channel activator), or kinase inhibitors. To research the effect of KCl on angiogenesis, angiogenesis-related proteins such as thrombospondin 1 (TSP1), anti-angiogenic factor, basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF), pro-angiogenic factor were assayed by western blot. Results The viability of HS27 cells was not affected by 25 mM KCl. Collagen synthesis increased dependent on time and concentration of KCl exposure. The phosphorylations of MAPK proteins such as extracellular-signal-regulated kinase (ERK) and p38 increased about 2.5-3 fold in the KCl treatment cells and were inhibited by treatment of NS1619. TSP1 expression increased by 100%, bFGF expression decreased by 40%, and there is no significant differences in the VEGF level by KCl treatment, TSP1 was inhibited by NS1619 or kinase inhibitors. Conclusions Our results suggest that KCl may function as a therapeutic agent for wound healing in the skin through MAPK signaling mediated by the $K^+$ ion channel.

염증세포주를 이용한 생체재료 용출물의 체외 생체적합성 평가 (In vitro Biocompatibility Evaluation of Biomaterial-elution Using Inflammatory Cell Lines)

  • 신연호;송계용;서민지;김성민;박정극;김동섭;박기정;허찬희;차지훈;서영권
    • KSBB Journal
    • /
    • 제26권3호
    • /
    • pp.248-254
    • /
    • 2011
  • Various biometerials have been researched and have been developed for treatment of some disease through transplantation to body. They have been evaluated by in vitro cytotoxicity test using some skin-derived cell lines for prediction of their biocompatibility in vivo. However, the results of experiments using mesenchymal or epithelial cells could not be considered in vivo immune reaction. In this study, we evaluated the biomaterial-elution (elute from high density polyethylene film) using some cell lines (L929, Jurkat, U937) in vitro, and then that results were compared with in vivo results from guinea pig sensitization test. In sensitization test, saline and elution of syringe could not induce erythema, but only DNCB (hypersensitive chemical) induce erythema at guinea pig sensitization test. In cell experiment, the cytotoxicity results of inflammatory cells (Jurkat; T lymphocyte, U937; monocyte) was no difference with L929 (fibroblast) in the overall trend. However, inflammatory cell lines were only secreted inflammatory cytokine (TNF-${\alpha}$, INF-${\gamma}$) in some materials (biomateriallution, FAC, DNCB). And the biomaterial-elution did not have toxicity to the cells, but it induced the inflammatory cytokines in inflammatory cell lines only. So, we were predicted inflammatory reaction through the cytokine resultes of inflammatory cell lines, and it was more correlated with in vivo results than cytotoxicity test. Therefore, we suggested that the inflammatory cytokine assay using inflammatory cell lines are more effective method in vitro for evaluation of biocompatibility of biomaterials or chemicals.

α-Mangostin and Apigenin Induced Cell Cycle Arrest and Programmed Cell Death in SKOV-3 Ovarian Cancer Cells

  • Ittiudomrak, Teeranai;Puthong, Songchan;Roytrakul, Sittiruk;Chanchao, Chanpen
    • Toxicological Research
    • /
    • 제35권2호
    • /
    • pp.167-179
    • /
    • 2019
  • Ovarian cancer is the fifth main cause of pre-senescent death in women. Although chemotherapy is generally an efficient treatment, its side effects and the occurrence of chemotherapeutic resistance have prompted the need for alternative treatments. In this study, ${\alpha}$-mangostin and apigenin were evaluated as possible anticancer alternatives to the chemotherapeutic drug doxorubicin, used herein as a positive control. The ovarian adenocarcinoma cell line SKOV-3 (ATCC No. HTB77) was used as model ovarian cancer cells, whereas the skin fibroblast line CCD-986Sk (ATCC No. CRL-1947) and lung fibroblast line WI-38 (ATCC No. CCL-75) were used as model untransformed cells. Apigenin and doxorubicin inhibited the growth of SKOV-3 cells in a dose- and time-dependent manner. After 72 hr exposure, doxorubicin was mostly toxic to SKOV-3 cells, whereas apigenin was toxic to SKOV-3 cells but not CCD-986Sk and WI-38 cells. ${\alpha}$-Mangostin was more toxic to SKOV-3 cells than to CCD-986Sk cells. A lower cell density, cell shrinkage, and more unattached (floating round) cells were observed in all treated SKOV-3 cells, but the greatest effects were observed with ${\alpha}$-mangostin. With regard to programmed cell death, apigenin caused early apoptosis within 24 hr, whereas ${\alpha}$-mangostin and doxorubicin caused late apoptosis and necrosis after 72 hr of exposure. Caspase-3 activity was significantly increased in ${\alpha}$-mangostin-treated SKOV-3 cells after 12 hr of exposure, whereas only caspase-9 activity was significantly increased in apigenin-treated SKOV-3 cells at 24 hr. Both ${\alpha}$-mangostin and apigenin arrested the cell cycle at the $G_2/M$ phase, but after 24 and 48 hr, respectively. Significant upregulation of BCL2 (apoptosis-associated gene) and COX2 (inflammation-associated gene) transcripts was observed in apigenin- and ${\alpha}$-mangostin-treated SKOV-3 cells, respectively. ${\alpha}$-Mangostin and apigenin are therefore alternative options for SKOV-3 cell inhibition, with apigenin causing rapid early apoptosis related to the intrinsic apoptotic pathway, and ${\alpha}$-mangostin likely being involved with inflammation.

백서 연조직에 저수준 레이저 요법시 창상 치유기전에 관한 연구 (EFFECT OF LOW LEVEL LASER THERAPY ON HEALING OF OPEN SKIN WOUNDS IN RATS)

  • 유상우;김경욱;이재훈;김창진
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제26권5호
    • /
    • pp.481-489
    • /
    • 2000
  • This research was focused on overall examination of tissue alteration, wound healing promotion. After the hair on the dorsal surface was shaved, $5{\times}5mm$ oval skin defect was formed. Experimental wounds of right side were irradiated on every day for 90 second with Ga-Al-As semi-conductor laser. Left side wounds served as control group. The rats were sacrificed on the 1st, 3rd, 5th, 7th, 14th, 21th day. For light microscopically, parafin section were stained with H&E, MT. The outcomes were as follows : 1. On 1st day, experimental and control group were seen acute inflammatory cell infiltration, edema. 2. On the 3rd days, both groups were seen crust development, collagen, blood vessel proliferation. 3. On the 5th days, experimental group were reduced edema and inflammatory cell infiltration than control group. 4. On the 7th days, both groups were observed edema, inflammatory cell infiltration disappearance and keratinocytes motility from wound defect. 5. On the 14th days, experimental group appeared collagen, blood vessel proliferation and hair follicle than control group. 6. On the 21th days, both groups were seen normal status re-epithelization. According to the above results, The wound-healing stimulated by laser radiation involves an increased rate of epithelial growth. LLLT was confirmed that it has fibroblast, blood vessel proliferation, influence initial wound healing process.

  • PDF