• 제목/요약/키워드: skew element

검색결과 118건 처리시간 0.024초

농형 유도전동기의 회전자 도체 불량 검출 방법 (The detection of Broken Rotor Bars in Squirrel Cage Induction Motors)

  • 임달호;김창업;정용배;권오문;박병섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 A
    • /
    • pp.65-67
    • /
    • 1995
  • The squirrel cage rotors for induction motors may have several faults such as broken bars, bad spots in end ring, abnormal skew caused by improper processing. These faults have bad effect on the performance of the induction motor. This paper proposes the detecting technique of these faults by analyzing the current of the detecting electric magnet, using 2-D finite element method taking account of the rotor movement.

  • PDF

전동 조향 장치용 브러쉬리스 영구자석 전동기의 스테이터 스큐 설계 (Design of Brushless Permanent Machine with Skewed Stator for Electrical Power Steering System)

  • 이충성;정경태;홍정표;김해중;김영균
    • 한국자기학회지
    • /
    • 제25권6호
    • /
    • pp.189-197
    • /
    • 2015
  • 최근 차량의 연비규제 강화로 인해, 기존 내연기관의 차량 부품 구동방식이 유압방식 대신 전동방식으로 대체되어 가고 있다. 이러한 부품의 대표적인 예가, Electronic Power Steering(EPS)이며, 현재 대부분의 차량에 적용되고 있다. EPS의 핵심 부품으로서는 전동기가 있으며, EPS의 조향감 개선 및 진동/소음 저감을 위해 전동기의 Cogging torque 및 Torque Ripple 저감이 요구된다. 일반적으로 Cogging torque 및 Torque ripple을 저감하기 위해서, 고정자 또는 회전자에 스큐를 적용한다. 본 연구에서는 고정자에 스큐가 적용된 Bushless PMSM(Permanent Magnet Synchronous Motor)의 설계 방법 및 해석방법에 대해 소개한다. 고정자 skew가 적용된 EPS용 PMSM에 대해 초기 설계를 진행하고, RSM(Response Surface Methodology)을 이용한 최적설계를 수행한다. 유한요소해석을 통해 역기전력, Inductance, Load torque 등의 성능을 확인한다. 마지막으로 시제품 제작 및 실험을 통해 설계 방법에 대한 신뢰성을 검증한다.

수평으로 경사진 박스암거 위 콘크리트 포장 슬래브의 최적 줄눈위치 (Optimal Joint Position in Concrete Pavement Slab over Skewed Box Culvert)

  • 염우성;정호성;연우;손덕수;이재훈;정진훈
    • 한국도로학회논문집
    • /
    • 제15권5호
    • /
    • pp.47-55
    • /
    • 2013
  • PURPOSES : The purpose of this study is to investigate the optimal joint positions which can minimize distresses of concrete pavement containing box culvert with horizontally skewed angles. METHODS : The concrete pavement containing the box culvert with different skewed angles and soil cover depths was modeled by 3 dimensional finite element method. The contact boundary condition was used between concrete and soil structures in addition to the nonlinear material property of soil in the finite element model. A dynamic analysis was performed by applying the self weight of pavement, negative temperature gradient of slab, and moving vehicle load simultaneously. RESULTS : In case of zero skewed angle ($0^{\circ}$), the maximum tensile stress of slab was the lowest when the joint was positioned directly over side of box culvert. In case there was a skewed angle, the maximum tensile stress of slab was the lowest when the joint passed the intersection between side of the box culvert and longitudinal centerline of slab. The magnitude of the maximum tensile stress converged to a constant value regardless the joint position from 3m of soil cover depth at all of the horizontally skewed angles. CONCLUSIONS : More reasonable and accurate design of the concrete pavement containing the box culvert can be possible based on the research results.

풍력발전용 영구자석 다극 동기발전기의 코깅토크의 해석 및 저감 (Reduction and Analysis for Cogging Torque of Permanent Magnet Synchronous Generators with Multi-Pole Rotor for Wind Power Application)

  • 장석명;이성호;최장영
    • 전기학회논문지
    • /
    • 제57권3호
    • /
    • pp.375-383
    • /
    • 2008
  • This paper deals with reduction and analysis of cogging torque for permanent magnet synchronous generators with multi-pole rotor for wind power applications. Open-circuit field solutions are derived using a magnetic vector potential and a two-dimensional (2-d) polar coordinate systems. On the basis of derived open-circuit field solutions and 2-d permeance functions, we also derive open-circuit field solutions considering stator slotting effects. By using open-circuit field solutions considering stator slotting effects and energy variation methods, this paper analytically predicts the cogging torque considering skew effects. All analytical results are shown in good agreement with those obtained from finite element (FE) analyses. In order to reduce the cogging torque, by predicting the variation of the cogging torque according to pole arc/pitch ratio using analytical and FE methods, pole arc/pitch ratio which makes the cogging torque minimum are determined. However, we confirm that measured value for cogging torque of the PMG with determined pole arc/pitch ratio is twice higher than predicted value. Therefore, the reason for an error between measured and predicted cogging torque is discussed in terms of a shape of PMs and is proved experimentally.

ON CONJUGATE POINTS OF THE GROUP H(2, 1)

  • Jang, Chang-Rim;Park, Keun;Lee, Tae-Hoon
    • East Asian mathematical journal
    • /
    • 제22권2호
    • /
    • pp.249-257
    • /
    • 2006
  • Let n be a 2-step nilpotent Lie algebra which has an inner product <,> and has an orthogonal decomposition $n=\delta{\oplus}\varsigma$ for its center $\delta$ and the orthogonal complement $\varsigma\;of\;\delta$. Then Each element Z of $\delta$ defines a skew symmetric linear map $J_Z:\varsigma{\rightarrow}\varsigma$ given by $=$ for all $X,\;Y{\in}\varsigma$. Let $\gamma$ be a unit speed geodesic in a 2-step nilpotent Lie group H(2, 1) with its Lie algebra n(2, 1) and let its initial velocity ${\gamma}$(0) be given by ${\gamma}(0)=Z_0+X_0{\in}\delta{\oplus}\varsigma=n(2,\;1)$ with its center component $Z_0$ nonzero. Then we showed that $\gamma(0)$ is conjugate to $\gamma(\frac{2n{\pi}}{\theta})$, where n is a nonzero intger and $-{\theta}^2$ is a nonzero eigenvalue of $J^2_{Z_0}$, along $\gamma$ if and only if either $X_0$ is an eigenvector of $J^2_{Z_0}$ or $adX_0:\varsigma{\rightarrow}\delta$ is not surjective.

  • PDF

Analysis of Permanent Magnet Synchronous Generator for Vortex Induced Vibration Hydrokinetic Energy Applications Based on Analytical Magnetic Field Calculations

  • Choi, Jang-Young;Shin, Hyun-Jae;Choi, Jong-Su;Hong, Sup;Yeu, Tae-Kyeong;Kim, Hyung-Woo
    • Journal of Magnetics
    • /
    • 제17권1호
    • /
    • pp.19-26
    • /
    • 2012
  • This paper deals with the performance analysis and estimation of the electrical parameters of a permanent magnet synchronous generator (PMSG) for hydrokinetic energy conversion applications using vortex induced vibration (VIV). The analytical solutions for the magnetic fields produced by permanent magnets (PMs) and stator winding currents are obtained using a 2D polar coordinate system and a magnetic vector potential. An analytical expression for the 2D permeance is also derived, which takes into account stator skew effects. Based on these magnetic field solutions and the 2D permeance function, electrical circuit parameters such as the backemf constant and the air-gap inductance are obtained analytically. The performances of the PMSG are investigated using the estimated electrical circuit parameters and an equivalent circuit (EC). All analytical results are validated extensively using 2D finite element (FE) analyses. Experimental measurements for parameters such as the back-emf and inductance are also presented to confirm the analyses.

Inflow Prediction and First Principles Modeling of a Coaxial Rotor Unmanned Aerial Vehicle in Forward Flight

  • Harun-Or-Rashid, Mohammad;Song, Jun-Beom;Byun, Young-Seop;Kang, Beom-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권4호
    • /
    • pp.614-623
    • /
    • 2015
  • When the speed of a coaxial rotor helicopter in forward flight increases, the wake skew angle of the rotor increases and consequently the position of the vena contracta of the upper rotor with respect to the lower rotor changes. Considering ambient air and the effect of the upper rotor, this study proposes a nonuniform inflow model for the lower rotor of a coaxial rotor helicopter in forward flight. The total required power of the coaxial rotor system was compared against Dingeldein's experimental data, and the results of the proposed model were well matched. A plant model was also developed from first principles for flight simulation, unknown parameter estimation and control analysis. The coaxial rotor helicopter used for this study was manufactured for surveillance and reconnaissance and does not have any stabilizer bar. Therefore, a feedback controller was included during flight test and parameter estimation to overcome unstable situations. Predicted responses of parameter estimation and validation show good agreement with experimental data. Therefore, the methodology described in this paper can be used to develop numerical plant model, study non-uniform inflow model, conduct performance analysis and parameter estimation of coaxial rotor as well as other rotorcrafts in forward flight.

고조파 전류를 이용한 영구자석형 동기 전동기의 토크 리플 저감 (Torque Ripple Reduction for Permanent Magnet Synchronous Motor using Harmonic Current Injection)

  • 권순오;이정종;이근호;홍정표
    • 전기학회논문지
    • /
    • 제58권10호
    • /
    • pp.1930-1935
    • /
    • 2009
  • This paper deals with the torque ripple reduction of permanent magnet synchronous motor using harmonic current injection. Torque ripple of electric motor reduces system stability and performances, therefore efforts to reduce torque ripple are exerted in the design process. Torque ripple can be reduced by appropriate pole/slot combination, skew of rotor or stator, design of magnetic circuit, etc. In addition, torque ripple can be also reduced by input voltage and current, and many researches have been conducted to reduce torque ripple for six-step drive. Torque ripple reduction for current vector controlled permanent magnet synchronous motor also have been conducted and verified by investigating back emf wave form. Torque ripple reduction in this paper started from getting torque profile according to input current and electrical angle calculated by FEA, then instantaneous currents at each electrical angles for constant torque are calculated and applied to experiments. Therefore, 0% of torque ripple can be obtained theoretically with harmonic current injection. In order to maximize the effect of torque ripple reduction, a BLDC motor having high harmonic component of back emf is chosen. With sinusoidal current drive, over 100% of torque ripple is obtained initially, then 0.5 % of torque ripple is obtained by FEA using harmonic current injection. The effect is verified by experiment and the presented method can be effectively applicable to Electric Power Steering(EPS).

하이브리드 유전자 알고리즘과 다중목적함수를 적용한 플레이트 거더교의 격자모델에 대한 유한요소 모델개선 (FE Model Updating on the Grillage Model for Plate Girder Bridge Using the Hybrid Genetic Algorithm and the Multi-objective Function)

  • 정대성;김철영
    • 한국지진공학회논문집
    • /
    • 제12권6호
    • /
    • pp.13-23
    • /
    • 2008
  • 본 논문에서는 거더교 형식을 갖는 교량구조물의 격자 유한요소모델에 대한 모델개선을 위해 하이브리드 유전자 알고리즘에 기초한 유한요소 모델개선기법을 제안하였다. 하이브리드 유전자 알고리즘은 유전자 알고리즘과 심플렉스 최적화방법에 기초한 직접탐색기법으로 구성하였다. 제안된 기법에 적용할 수 있도록 고유진동수, 모드형상 및 정적 처짐에 대한 계측값과 유한요소해석 결과를 사용한 적합함수를 제시하고, 강성과 질량을 동시에 개선할 수 있도록 이들 세 가지 적합함수의 선형 조합 형태를 갖는 다중목적함수를 제시하였다. 제안된 방법은 2경간 연속 격자 유한요소모델의 수치예제와 단경간 플레이트 거더교에 대하여 검증하였다. 수치예제의 경우, 랜덤 노이즈를 고려한 계측오차의 영향을 수치해석적으로 평가하였다. 수치해석과 실험적 검증을 통해, 제안된 방법이 거더교 형식의 교량에 대한 유한요소 모델개선에 적합하고 효과적임을 검증하였다.

유체-구조 반복해석법에 의한 유연 프로펠러의 설계 알고리듬 개발 (Design Algorithm of Flexible Propeller by Fluid-Structure Interactive Analysis)

  • 장현길;노인식;홍창호;이창섭
    • 대한조선학회논문집
    • /
    • 제49권6호
    • /
    • pp.528-533
    • /
    • 2012
  • Flexible composite propellers are subject to large deformation under heavy loading, and hence the hydrodynamic performance of deformed propeller might deviate from that of the metallic propeller under negligible deformation. To design the flexible propeller, it is therefore necessary to be able to evaluate the structural response of the blades to the hydrodynamic loadings, and then the influence of the blade deformation upon the hydrodynamic loadings. We use the lifting-surface-theory-based propeller analysis and design codes in solving the hydrodynamic problem, and the finite-element-method program formulated with 20-node iso-parametric solid elements for the analysis of the structural response. The two different hydrodynamic and structural programs are arranged to communicate through the carefully-designed interface scheme which leads to the derivation of the geometric parameters such as the pitch, the rake and the skew distributions common to both programs. The design of flexible propellers, suitable for manufacturing, is shown to perform the required thrust performance when deformed in operation. Sample design shows the fast iteration scheme and the robustness of the design procedure of the flexible propellers.