• Title/Summary/Keyword: size reduction

Search Result 3,637, Processing Time 0.04 seconds

Fabrication of Composite Powders by Mechanical Alloying of Magnetite-M (M = Ti, Al) Systems (마그네타이트와 금속(Ti, Al)의 기계적 합금화에 의한 복합분말의 합성)

  • 홍대석;이성희;이충효;김지순;권영순
    • Journal of Powder Materials
    • /
    • v.11 no.3
    • /
    • pp.247-252
    • /
    • 2004
  • Recently, it has been found that mechanical alloying (MA) facilitates the nanocomposites formation of metal-metal oxide systems through solid-state reduction during ball milling. In this work, we studied the MA effect of Fe$_{3}$O$_{4}$-M (M = Al, Ti) systems, where pure metals are used as reducing agents. It is found that composite powders in which $Al_{2}$O$_{3}$ and TiO$_{2}$ are dispersed in $\alpha$-Fe matrix with nano-sized grains are obtained by mechanical alloying of Fe$_{3}$O$_{4}$ with Al and Ti for 25 and 75 hours, respectively. It is suggested that the large negative heat associated with the chemical reduction of magnetite by aluminum is responsible for the shorter MA time for composite powder formation in Fe$_{3}$O$_{4}$-Al system. X-ray diffraction results show that the reduction of magnetite by Al and Ti if a relatively simple reaction, involving one intermediate phase of FeAl$_{2}$O$_{4}$ or Fe$_{3}$Ti$_{3}$O$_{10}$. The average grain size of $\alpha$-Fe in Fe-TiO$_{2}$ composite powders is in the range of 30 nm. From magnetic measurement, we can also obtain indirect information about the details of the solid-state reduction process during MA.

Catalytic Reduction Efficiency Comparison between Porous Au, Pt, and Pd Nanoplates (요철형 금, 백금, 팔라듐 나노플레이트의 촉매성 환원 효율 비교)

  • Shin, Woojun;Kim, Young-Jin;Jang, Hongje;Park, Ji Hun;Kim, Young-Kwan
    • Composites Research
    • /
    • v.32 no.2
    • /
    • pp.85-89
    • /
    • 2019
  • The size, morphology and composition of nanoparticles are regarded as the most important factors to the efficiency of catalytic reduction of various chemical compounds. In order to make a systematic comparison, gold, platinum and palladium nanoplates with 100 nm diameter with rough surface morphology were manufactured through the galvanic replacement reaction, and the reaction kinetics of the catalytic reduction of 4-nitrophenol and 4-nitroaniline was systematically analyzed by spectroscopic measurement. According to the observation, the catalytic reduction efficiency was significantly different against the constitutional elements in order of Pd > Au > Pt, and it was additionally influenced by the type of substrate.

An Empirical Analysis on Macro-economic Effects of the Proposed Reduction of Legal Working Hours in Korea (법정근로시간 단축의 거시경제 효과 분석)

  • Nam, Sung-il
    • Journal of Labour Economics
    • /
    • v.25 no.2
    • /
    • pp.33-78
    • /
    • 2002
  • This study analyzes effects of the proposed reduction of legal working hours in Korea in which base wage is unchanged with working hours reduction. The theoretical analysis shows that a reduction of legal working hours would result in less than equal size reduction of actual working hours, and increase in wages. On the other hand, the effects on employment is ambiguous depending on the substitution effect and scale effect. An empirical analysis based on macro-economic model simulation supports the theoretical conjecture. It has been found that with the reduction of legal working hours, real wages and consumption increase while actual working hours decreases about half of the legal hours reduction. In addition, the immediate and outright imposition of legal hours reduction on all sectors of the economy is found to create a cost push inflation and reduce GDP, investment, and employment. This negative effects are lessened as the reduction of legal hours is gradually made and/or some measures to absorb the cost shock such as abolition of paid monthly leave are employed together.

  • PDF

Size Control and Dispersion Properties of Illite Clay by Physicochemical Treatment (물리화학적 처리에 의한 일라이트 점토광물의 입도조절 및 분산특성)

  • Lim, Jae Won;Jeong, Euigyung;Seo, Kyeong-won;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.133-137
    • /
    • 2011
  • In this study, illite was size-reduced using a wet-ball-milling treatment to improve its dispersion. Changes in illite particle size, size distribution, and dispersion characteristics after varying the treatment period were investigated. And the dispersion and dispersion stability of illite solution after 2 h wet ball milling treatment with different pH conditions were also evaluated. The illite particle size significantly decreased as the treatment time increased and the size reduction effect of wet ball milling deteriorated above 2 h treatment time. In addition, illite particle size was more evenly distributed as the treatment time increased. X-ray diffraction (XRD) analysis showed that no crystal structural changes of illite were induced, but the characteristic peak of illite the weaker due to the size reduction and exfoliation, as the treatment time increased. Zeta potential analysis showed that the illite dispersion improved, as the treatment time increased. The illite wet-ball-mill treated at pH 2 had the lowest dispersion stability. Illite dispersion and dispersion stability increased as pH increased, due to the increase in surface ionization. Hence, the results showed that as the treatment time increased, the illite particle size decreased, and dispersion and dispersion stability improved due to the increase in surface energy and repulsion force between particles.

Preparation of Nickel Powders by the Reduction of Ni(OH)2 Reactant Slurries from Nonaqueous Media (비수용성 매질로부터 Ni(OH)2 반응슬러리의 환원반응에 의한 니켈 분말의 제조)

  • Choi Eun Young;Lee Yoon Bok;Yoon Suk Young;Kim Kwang Ho;Kim Jin Chun;Rhyim Young Mok;Kim Hyong Kuk;Kim Yang Do
    • Korean Journal of Materials Research
    • /
    • v.15 no.5
    • /
    • pp.334-339
    • /
    • 2005
  • Nickel Powders were synthesized by the reduction of $Ni(OH)_2$ reactant slurries from nonaqueous media, and the morphological characteristics of nickel powders with the addition of NaOH, the composition of mixed solvents, reaction temperature and reaction time were investigated. The NaOH addition changed the structure of agglomeration in the submicron range. As the volume ratio of TEA to DEA increased, the powders slightly suppressed the agglomeration between particles and their size increased. The reaction temperature on size and shape of nickel powders was significant. As reaction time was shortened from 40 min to 0.3 min at $220^{\circ}C$, size distribution of nickel powders was transferred to a narrow size distribution owing to the presence of smaller particles with below $1.0\;{\mu}m$.

Control of Size and Morphology of Particles Using CO2 Laser in a Flame (화염증 CO2 Laser를 이용한 입자의 크기 및 형상 제어)

  • Lee, Donggeun;Lee, Seonjae;Choi, Mansoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1379-1389
    • /
    • 1999
  • A new technique for control of size and shape of flame-made particles is Introduced. The characteristic sintering time can be controlled Independently of collision time by heating the particles with irradiation of laser because the sintering time strongly depends on temperature. A coflow oxy-hydrogen diffusion flame burner was used for $SiCl_4$ conversion to silica particle. Nanometer sized aggregates irradiated by a high power CW $CO_2$ laser beam were rapidly heated up to high temperatures and then were sintered to approach volume-equivalent spheres. The sphere collides much slower than the aggregate, which results in reduction of sizes of particles maintaining spherical shape. Light scattering of Ar ion laser and TEM observation using a local sampling device were used to confirm the above effects. When the $CO_2$ laser was irradiated at low position from the burner surface, particle generation due to gas absorption of laser beam occurred and thus scattering intensity increased with $CO_2$ laser power. At high irradiation position, scattering intensity decreased with $CO_2$ laser power and TEM image showed a clear mark of evaporation and recondensation of particles for high $CO_2$ laser power. When the laser was irradiated between the above two positions where small aggregates exist, average size of spherical particles obviously decreased to 58% of those without $CO_2$ laser irradiation with the spherical shape. Even for increased carrier gas flow rate by a factor of three, TEM photograph also revealed considerable reduction of particle size.

Ring Hybrid Coupler with Compact Size and Wide Bandwidth (넓은 대역폭을 가지는 소형 링 하이브리드)

  • Kim, Ui-Jung;Kim, Seung-Hwan;Kim, Ell-Kou;Lee, Young-Soon;Kim, Young;Yoon, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.2
    • /
    • pp.194-200
    • /
    • 2009
  • This paper introduces a ring hybrid coupler using shunt capacitors, high impedance lines and CRLH-TLs (Composite Right/Left-Handed Transmission Lines) with size reduction and bandwidth enhancement. The reduced method of line length uses to combine a short length high impedance line and shunt capacitors. Also, there is combined CRLH meta-material so as to obtain wide bandwidth of transmission line using nonlinear phase characteristic of CRLH-TL that consists of series capacitors and shunt inductors. The implemented ring hybrid coupler shows a novel design with compact size that is smaller than 10% and bandwidth is larger than 60% of conventional ring hybrid coupler.

  • PDF

A Study on Pillar Behavior of Twin Parallel Tunnels by Numerical Approach (병렬터널 필라부 거동에 대한 수치해석 검토)

  • Byun, Yoseph;Kim, Hyungi;Lee, Sangsu;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.8
    • /
    • pp.49-55
    • /
    • 2010
  • Safety estimation of the pillar between parallel tunnels are very important considering stress concentration in case the piller width is not enough to secure the stability. Pillar width needs to be determined properly because of the progressive failure-risk of pillar due to stress-concentration. In this research, the effect of element size in numerical analysis was evaluated based on that yield pillar's stability and proposed systematic analysis about pilar's stability examination. In consequence of it, element size does not give any effect on intensity stress ratio. On the other hand, the analysis using the smaller element size results in lower safety factor in strength reduction technique. In case of the weathered re.k on the main ground layer, the analysis of result was not reliable. In conclusion, the smaller element size is, the more stable factor is.

The wideband direct digital frequency synthesizer using the 2-Parallel QD-ROM (2-병렬 QD-ROM 방식을 이용한 광대역 직접 디지털 주파수 합성기)

  • Kim, Chong-Il;Hong, Chan-Ki
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.4
    • /
    • pp.291-297
    • /
    • 2011
  • In this paper, the differential quantized method and the parallel method to reduce the size of ROM in the direct digital frequency synthesizer(DDFS) is proposed And we design the DDFS by FPGA The new ROM compression method can reduce the ROM size by using the two ROM. The quantized value of sine is saved by the quantized-ROM(Q-ROM) and the differential ROM(D-ROM). Also we design the phase-to-sine converter using the phase accumulator of parallel type for generating the high frequency. So the total size of the ROM in the proposed DDFS is significantly reduced compared to the original ROM The ROM compression ratio of 67.5% is achieved by this method. Also, the power consumption is decreased according to the ROM size reduction and we can design the DDFS generating the high frequency.

Overexpression of the Downward Leaf Curling (DLC) Gene from Melon Changes Leaf Morphology by Controlling Cell Size and Shape in Arabidopsis Leaves

  • Kee, Jae-Jun;Jun, Sang Eun;Baek, Seung-A;Lee, Tae-Soo;Cho, Myung Rae;Hwang, Hyun-Sik;Lee, Suk-Chan;Kim, Jongkee;Kim, Gyung-Tae;Im, Kyung-Hoan
    • Molecules and Cells
    • /
    • v.28 no.2
    • /
    • pp.93-98
    • /
    • 2009
  • A plant-specific gene was cloned from melon fruit. This gene was named downward leaf curling (CmDLC) based on the phenotype of transgenic Arabidopsis plants overexpressing the gene. This expression level of this gene was especially upregulated during melon fruit enlargement. Overexpression of CmDLC in Arabidopsis resulted in dwarfism and narrow, epinastically curled leaves. These phenotypes were found to be caused by a reduction in cell number and cell size on the adaxial and abaxial sides of the epidermis, with a greater reduction on the abaxial side of the leaves. These phenotypic characteristics, combined with the more wavy morphology of epidermal cells in overexpression lines, indicate that CmDLC overexpression affects cell elongation and cell morphology. To investigate intracellular protein localization, a CmDLC-GFP fusion protein was made and expressed in onion epidermal cells. This protein was observed to be preferentially localized close to the cell membrane. Thus, we report here a new plant-specific gene that is localized to the cell membrane and that controls leaf cell number, size and morphology.